Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Ảnh hưởng của sự xâm lấn của cây thông và cấu trúc tán cây đến nhiên liệu và hỏa hoạn trong cảnh quan rừng sồi
Tóm tắt
Vai trò của hỏa trong việc duy trì các hệ sinh thái chủ yếu là sồi được công nhận rộng rãi. Việc loại bỏ hỏa dẫn đến sự thay đổi về cấu trúc và thành phần mà làm thay đổi thành phần và cấu trúc của lớp nhiên liệu, từ đó ảnh hưởng đến hành vi và tác động của hỏa. Để làm rõ ảnh hưởng của cấu trúc tán cây lên nhiên liệu và cường độ hỏa hoạn trong các khu rừng sồi và savanna, chúng tôi đã khảo sát các lớp nhiên liệu trên một gradient từ đồng cỏ mở đến rừng sồi trắng Oregon xâm lấn bởi cây thông Douglas (Pseudotsuga menziesii (Mirb.) Franco) tại Bald Hills thuộc Vườn quốc gia Redwood, California, Hoa Kỳ. Khối lượng thảm thực vật hữu cơ giảm đáng kể từ mức cao trong các đồng cỏ (3,38 Mg ha−1) xuống mức thấp trong các rừng xâm lấn (0,03 Mg ha−1), trong khi đó khối lượng lá mục và nhiên liệu gỗ tăng đáng kể dọc theo gradient này. Nhiệt độ hỏa trung bình ở độ cao 30 cm dao động từ 74,7 °C trong rừng xâm lấn lên đến 207,9 °C trong đồng cỏ. Các cộng đồng đồng cỏ và savanna rất dễ cháy duy trì khối lượng thảm thực vật hữu cơ nặng, nhưng có khối lượng gỗ thấp, tạo điều kiện cho hỏa lan nhanh và có cường độ tương đối cao. Sự xâm lấn của cây thông Douglas vào các đồng cỏ và cộng đồng chủ yếu là sồi làm giảm khả năng cháy qua các thay đổi về thành phần và cấu trúc của lớp nhiên liệu (ví dụ: việc thay thế các nhiên liệu hữu cơ bằng nhiên liệu gỗ), điều này nhấn mạnh sự cần thiết của các nỗ lực phục hồi sinh thái tập trung vào cấu trúc lớp nhiên liệu bên cạnh các mục tiêu phục hồi phổ biến khác.
Từ khóa
#rừng sồi #hỏa hoạn #cấu trúc tán cây #xâm lấn cây thông #phục hồi sinh thái #lớp nhiên liệuTài liệu tham khảo
Abella, S.R., and P.Z. Fulé. 2008. Fire effects on Gambel oak in southwestern ponderosa pine-oak forests. USDA Forest Service Research Note RMRS-RN-36, Fort Collins, Colorado, USA.
Agee, J.K. 1993. Fire ecology of Pacific Northwest forests. Island Press, Washington, D.C., USA.
Agee, J.K., C.S. Wright, N. Williamson, and M.H. Huff. 2002. Foliar moisture content of Pacific Northwest vegetation and its relation to wildland fire behavior. Forest Ecology and Management 167: 57–66. doi: 10.1016/S0378-1127(01)00690-9
Alexander, M.E. 1982. Calculating and interpreting forest fire intensities. Canadian Journal of Botany 60: 349–357. doi: 10.1139/b82-048
Arguello, L.A. 1994. Effects of prescribed burning on two perennial bunchgrasses in the Bald Hills of Redwood National Park. Thesis, Humboldt State University, Arcata, California, USA.
Barnhart, S.J., J.R. McBride, and P. Warner. 1996. Invasion of northern oak woodlands by Pseudotsuga menziesii (Mirb.) Franco in the Sonoma Mountains of California. Madroño 43: 28–45.
Beckage, B., W.J. Platt, and L.J. Gross. 2009. Vegetation, fire, and feedbacks: a disturbance-mediated model of savannas. American Naturalist 174: 805–818. doi: 10.1086/648458
Bond, W.J., and J.E. Keeley. 2005. Fire as a global “herbivore”: the ecology and evolution of flammable ecosystems. Trends in Ecology & Evolution 20: 387–394. doi: 10.1016/j.tree.2005.04.025
Bond, W.J., and J.J. Midgley. 1995. Kill thy neighbor—an individualistic argument for the evolution of flammability. Oikos 73:79–85. doi: 10.2307/3545728
Bonham, C.D. 1989. Measurements for terrestrial vegetation. John Wiley and Sons, New York, New York, USA.
Bova, A.S., and M.B. Dickinson. 2008. Beyond “fire temperatures”: calibrating thermocouple probes and modeling their response to surface fires in hardwood fuels. Canadian Journal of Forest Research 38: 1008–1020. doi: 10.1139/X07-204
Brooks, M.L., C.M. D’Antonio, D.M. Richardson, J.B. Grace, J.E. Keeley, J.M. Di’Tomaso, R.J. Hobbs, M. Pellant, and D. Pyke. 2004. Effects of invasive alien plants on fire regimes. Bioscience 54: 677–688. doi: 10.1641/0006-3568(2004)054[0677:EOIAPO]2.0.CO;2
Brown, J.K. 1974. Handbook for inventorying downed woody material. USDA Forest Service INT-GTR-16. Intermountain Forest and Range experiment Station, Ogden, Utah, USA.
Brown, J.K. 1981. Bulk densities of nonuniform surface fuels and their application to fire modeling. Forest Science 27: 667–683. doi: 10.1126/science.6256857
Daubenmire, R. 1959. A canopy-coverage method of vegetation analysis. Northwest Science 33: 43–64.
Devine, W.D., and C.A. Harrington. 2006. Changes in Oregon white oak (Quercus garryana Dougl. ex Hook) following release from overtopping conifers. Trees 20: 747–756. doi: 10.1007/s00468-006-0089-8
Devine, W.D., and C.A. Harrington. 2007. Release of Oregon white oak from overtopping Douglas-fir: effects on soil water and microclimate. Northwest Science 81: 112–124. doi: 10.3955/0029-344X-81.2.112
Devine, W.D., C.A. Harrington, and D.H. Peter. 2007. Oak woodland restoration: understory response to removal of encroaching conifers. Ecological Restoration 25: 247–255. doi: 10.3368/er.25.4.247
Fonda, R.W., L.A. Belanger, and L.L. Burley. 1998. Burning characteristics of western conifer needles. Northwest Science 72: 1–9.
Fonda, R.W. 2001. Burning characteristics of needles from eight pine species. Forest Science 47: 390–396.
Foster, J.R., and S.E. Shaff. 2003. Forest colonization of Puget lowland grasslands at Fort Lewis, Washington. Northwest Science 77: 283–296.
Fritschle, J.A. 2008. Reconstructing historic ecotones using the public land survey: the lost prairies of Redwood National Park. Annals of the Association of American Geographers 98: 24–39. doi: 10.1080/00045600701734018
Gagnon, P.R., H.A. Passmore, W.J. Platt, J.A. Myers, C.E.T. Paine, and K.E. Harms. 2010. Does pyrogenicity protect burning plants? Ecology 91: 3481–3486. doi: 10.1890/10-0291.1
Ganteaume, A., C. Lampin-Maillet, M. Guijarro, C. Hernando, M. Jappiot, T. Fonturbel, P. Pérez-Gorostiaga, and J.A. Vega. 2009. Spot fires: fuelbed flammability and capability of fire brands to ignite fuelbeds. International Journal of Wildland Fire 18: 951–969. doi: 10.1071/WF07111
Gibson, D.J., D.C. Hartnett, and G.L.S. Merrill. 1990. Fire temperature heterogeneity in contrasting fire prone habitats: Kansas tallgrass prairie and Florida sandhill. Bulletin of the Torrey Botanical Club 117: 349–356. doi: 10.2307/2996832
Glitzenstein, J.S., W.J. Platt, and D.R. Streng. 1995. Effects of fire regime and habitat on tree dynamics in north Florida longleaf pine savannas. Ecological Monographs 65: 441–476. doi: 10.2307/2963498
Govender, N., W.S.W. Trollope, and B.W. Van Wilggen. 2006. The effect of fire season, fire frequency, rainfall and management on fire intensity in savanna vegetation in South Africa. Journal of Applied Ecology 43: 748–758. doi: 10.1111/j.1365-2664.2006.01184.x
Grossman, E.B., and D.J. Mladenoff. 2007. Open woodland and savanna decline in a mixed-disturbance landscape (1938 to 1998) in the Northwest Wisconsin (USA) Sand Plain. Landscape Ecology 22: 43–55. doi: 10.1007/s10980-007-9113-7
Guerin, D.N. 1993. Oak dome clonal structure and fire ecology in a Florida longleaf pine dominated community. Bulletin of the Torrey Botanical Club 120: 107–114. doi: 10.2307/2996939
Hastings, M.S., S. Barnhart, and J.R. McBride. 1997. Restoration management of northern oak woodlands. USDA Forest Service General Technical Report PSW-GTR-160. Pacific Northwest Research Station, Portland, Oregon, USA.
Hiers, J.K., J.J. O’Brien, R.E. Will, and R.J. Mitchell. 2007. Forest floor depth mediates understory vigor in xeric Pinus palustris ecosystems. Ecological Applications 17: 806–814. doi: 10.1890/06-1015
Higgins, S.I., W.J. Bond, and W.S.W. Trollope. 2000. Fire, resprouting and variability: a recipe for grass-tree coexistence in savanna. Journal of Ecology 88: 213–229. doi: 10.1046/j.1365-2745.2000.00435.x
Hoffman, W.A., and O.T. Solbrig. 2003. The role of topkill in the differential response of savanna woody species to fire. Forest Ecology and Management 180: 273–276. doi: 10.1016/S0378-1127(02)00566-2
Hoffman, W.A., B. Orthen, and P.K.V. Nascimento. 2003. Comparative fire ecology of tropical savanna and forest trees. Functional Ecology 17: 720–726. doi: 10.1111/j.1365-2435.2003.00796.x
Hoffman, W.A. 1999. Fire and population dynamics of woody plants in a neotropical savanna: matrix model projections. Ecology 80: 1354–1369. doi: 10.1890/0012-9658(1999)080[1354:FAPDOW]2.0.CO;2
Hunter, J.C., and M.G. Barbour. 2001. Through-growth by Pseudotsuga menziesii: a mechanism for change in forest composition without canopy gaps. Journal of Vegetation Science 12: 445–452. doi: 10.2307/3236996
Iverson, L.R., D.A. Yaussy, J. Rebbeck, T.F. Hutchinson, P.L. Long, and A.M. Prasad. 2004. A comparison of thermocouples and temperature paints to model spatial and temporal characteristics of landscape-scale prescribed fires. International Journal of Wildland Fire 13: 311–322. doi: 10.1071/WF03063
Jackson, L.E., R.B. Strauss, M.K. Firestone, and J.W. Bartolome. 1990. Influence of tree canopies on grassland productivity and nitrogen dynamics in deciduous oak savanna. Agriculture, Ecosystems & Environment 32: 89–105. doi: 10.1016/0167-8809(90)90126-X
Kane, J.M., J.M. Varner, and J.K. Hiers. 2008. The burning characteristics of southeastern oaks: discriminating fire facilitators from fire impeders. Forest Ecology and Management 256: 2039–2045. doi: 10.1016/j.foreco.2008.07.039
Kennard, D.K., K.W. Outcalt, D. Jones, and J.J. O’Brien. 2005. Comparing techniques for estimating flame temperature of prescribed fires. Fire Ecology 1(1): 75–84. doi: 10.4996/fireecology.0101075
Ko, L.J., and P.B. Reich. 1993. Oak tree effects on soil and herbaceous vegetation in savannas and pastures in Wisconsin. American Midland Naturalist 130: 31–42. doi: 10.2307/2426272
MacDougall, A.S., and R. Turkington. 2007. Does the type of disturbance matter when restorating disturbance-dependent grasslands? Restoration Ecology 15: 263–272. doi: 10.1111/j.1526-100X.2007.00209.x
Magee, T.K., and J.A. Antos. 1992. Tree invasion into a mountain-top meadow in the Oregon Coast Range, USA. Journal of Vegetation Science 3: 485–494. doi: 10.2307/3235805
Moreno, J.M., and W.C. Oechel. 1993. Demography of Adenostoma fasciculatum after fires of different intensities in southern California chaparral. Oecologia 96: 95–101. doi: 10.1007/BF00318035
Mutch, R.W. 1970. Wildland fires and ecosystems—a hypothesis. Ecology 51: 1046–1051. doi: 10.2307/1933631
Nelson Jr., R.M., and J.K. Hiers. 2008. The influence of fuelbed properties on moisture drying rates and timelags of longleaf pine litter. Canadian Journal of Forest Research 38: 2394–2404. doi: 10.1139/X08-078
Peterson, D.W., and P.B. Reich. 2001. Prescribed fire in oak savanna: fire frequency effects on stand structure and dynamics. Ecological Applications 11: 914–927. doi: 10.1890/1051-0761(2001)011[0914:PFIOSF]2.0.CO;2
Peterson, D.L., and R.D. Hammer. 2001. From open to closed canopy: a century of change in a Douglas-fir forest, Orcas Island, Washington. Northwest Science 75: 262–269.
Peterson, D.W., P.B. Reich, and K.J. Wrage. 2007. Plant functional group responses to fire frequency and tree canopy cover gradients in oak savannas and woodlands. Journal of Vegetation Science 18: 3–12. doi: 10.1111/j.1654-1103.2007.tb02510.x
Platt, W.J., and R.M. Gottschalk. 2001. Effects of exotic grasses on potential fine fuel loads in the ground cover of south Florida slash pine savannas. International Journal of Wildland Fire 10: 155–159. doi: 10.1071/WF01016
Rebertus, A.J., and B.R. Burns. 1997. The importance of gap processes in the development and maintenance of oak savannas and dry forests. Journal of Ecology 85: 635–645. doi: 10.2307/2960534
Regan, A.C., and J.K. Agee. 2004. Oak community and seedling response to fire at Fort Lewis, Washington. Northwest Science 78: 1–11.
Rothermel, R.C. 1983. How to predict the spread and intensity of forest and range fires. USDA Forest Service General Technical Report INT-143. Intermountain Forest and Range Experiment Station, Ogden, Utah, USA.
Scholes, R.J., and S.R. Archer. 1997. Tree-grass interactions in savannas. Annual Review of Ecology and Systematics 28: 517–544. doi: 10.1146/annurev.ecolsys.28.1.517
Schwilk, D.W. 2003. Flammability is a niche construction trait: canopy architecture affects fire intensity. American Naturalist 162: 725–733. doi: 10.1086/379351
Schwilk, D.W., and B. Kerr. 2002. Genetic niche-hiking: an alternative explanation for the evolution of flammability. Oikos 99: 431–442. doi: 10.1034/j.1600-0706.2002.11730.x
Snyder, J.R. 1984. The role of fire: Mutch ado about nothing? Oikos 43: 404–405. doi: 10.2307/3544161
Sugihara, N.G., L.J. Reed, and J.M. Lenihan. 1987. Vegetation of the Bald Hills oak woodlands, Redwood National Park, California. Madroño 34: 193–208.
Sugihara, N.G., and L.J. Reed. 1987. Vegetation ecology of the Bald Hills oak woodlands of Redwood National Park. Redwood National Park Research and Development Technical Report 21. Redwood National Park, Arcata, California, USA.
Thilenius, J.F. 1968. The Quercus garryana forests of the Willamette Valley, Oregon. Ecology 49: 1124–1133. doi: 10.2307/1934496
Thysell, D.R., and A.B. Carey. 2001. Quercus garryana communities in the Puget Trough, Washington. Northwest Science 75: 219–235.
Troumbis, A.Y., and L. Trabaud. 1989. Some questions about flammability in fire ecology. Acta Oecologica-Oecologia Plantarum 10: 167–175.
Tveten, R.K., and R.W. Fonda. 1999. Fire effects on prairies and oak woodlands on Fort Lewis, Washington. Northwest Science 73: 145–158.
Underwood, S., L. Arguello, and N. Siefkin. 2003. Restoring ethnographic landscapes and natural elements in Redwood National Park. Ecological Restoration 21: 278–283. doi: 10.3368/er.21.4.278
Varner, J.M., D.R. Gordon, F.E. Putz, and J.K. Hiers. 2005. Restoring fire to long-unburned Pinus palustris ecosystems: novel fire effects and consequences for long-unburned ecosystems. Restoration Ecology 13: 536–544. doi: 10.1111/j.1526-100X.2005.00067.x
Wally, A.L., E.S. Menges, and C.W. Weekly. 2006. Comparison of three devices for estimating fire temperatures in ecological studies. Applied Vegetation Science 9: 97–108. doi: 10.1111/j.1654-109X.2006.tb00659.x