The Effects of A Wheat Germ Rich Diet on Oxidative Mtdna Damage, mtDNA copy Number and Antioxidant Enzyme Activities in Aging Drosophila
Tóm tắt
The free radical theory of aging posits that the accumulation of macromolecular damage induced by toxic reactive oxygen species plays a central role in the aging process. Therefore consumption of dietary antioxidants appears to be of great importance. Wheat germ have strong antioxidant properties. Aim of this study is investigate the effects of a wheat germ rich diet on oxidative mtDNA damage, mtDNA copy number and antioxidant enzyme activities in Drosophila. Current results suggested that dietary wheat germ enhances the activities of antioxidant enzymes in Drosophila. There was no statistically difference in mtDNA damage and mtDNA copy number results of “Wheat Germ” and “Refined White Flour” feed groups. mtDNA damage slightly increased with aging in both groups but these changes were no statistically different.
Tài liệu tham khảo
Adom, K. K., Sorrells, M. E., Liu, R. H. (2005) Phytochemicals and antioxidant activity of milled fractions of different wheat varieties. J. Agric. Food Chem. 53, 2297–2306.
Alvarez, P., Alvarado, C., Puerto, M., Schlumberger, A., Jimenez, L., De la Fuente, M. (2006) Improvement of leucocyte functions in prematurely aging mice after five weeks of diet supplementation with polyphenol-rich cereals. Nutritio. 22, 913–921.
Ames, B. N., Shigenaga, M. K., Hagen, T. M. (1993) Oxidants, antioxidants and the degenerative diseases of aging. Natl Acad Sci. US. 90, 7915–7922.
Barazzoni, R., Short, K. R., Nair, K. S. (2000) Effects of aging on mitochondrial DNAcopy number and cytochrome coxidase gene expression in rat skeletal muscle, liver and heart. J. Biol. Chem. 275, 3343–3347.
Chang, C. L., Vargas, R. I. (2007) Wheat germ oil and its effects on a liquid larval rearing diet for oriental fruit flies (diphtera:tephritidae). J. Econ. Entomol. 100, 322–326.
Corral-Debrinski, M., Shoffner, J. M., Lott, M. T., Wallace, D. C. (1992) Association of mitochondrial DNA damage with aging and coronary atherosclerotic heart disease. Mutat. Res. 275, 169–180.
Fabian, E., Bogner, M., Elmadfa, I. (2012) Age related modification of antioxidant enzyme activities in relation to cardiovascular risk factors. Eur. J. Clin. Invest. 42, 42–48.
Fujimoto, H., Kobayashi, H., Ohno, M. (2010) Age induced reduction in mitochondrial manganese superoxide dismutase activity and tolerance of macrophages against apoptosis induced by oxidised low density lipoprotein. Circ. J. 74, 353–360.
Gumuslti, S., Bilmen, S., Korgun, D. K., Yargicoglu, P., Agar, A. (2001) Age-related changes in antioxidant enzyme activities and lipid peroxidation in lungs of control and sulfur dioxide exposed rats. Free Radio. Res. 34, 621–627.
Harman, D. (2006) Free radicals in aging. Mol. Cell. Biochem. 84, 155–161.
Judge, S., Jang, Y. M., Smith, A., Hagen, T., Leeuwenbourgh, C. (2005) Age-associated increases in oxidative stress and antioxidant enzyme activities in cardiac interfibrillar mitochondria: implications for the mitochondrial theory of aging. FASE. 19, 419–421.
Le Bourg, E. (2001) Oxidative stres aging and longevity in Drosophila melanogaster FEBS Letter. 498, 183–186.
Leenhardt, F., Fardet, A., Lyan, B., Gueux, E., Rock, E., Mazur, A., Chanliaud, E., Demigne, C. Remesy, C. (2008) Wheat germ supplementation of a low vitamin E diet in rats affords effective antioxidant protection in tissues. J. Am. Coll. Nutr. 27, 222–228.
Lesnefsky, E. J., Moghaddas, S., Tandler, B., Kerner, J., Hoppel, C. L. (2001) Mitochondrial dysfunction in cardiac disease: ischemia-reperfusion, aging and heart failure. J. Mol. Cell. Cardiol. 33, 1065–1089.
Liang, F.-Q., Godley, B. F. (2003) Oxidative stress induced mtDNA damage in human retinal pigment epithelial cells: a possible mechanism for RPE aging and ge-related macular degeneration. Exp. Eye Res. 76, 397–403.
Lim, H., Bodmer, R., Perrin, L. (2006) Drosophila aging 2005-2006. Exp. Gerontol. 41, 1213–1216.
Luck, H. (1963) Catalase. In: Bergmeyer, H. U. (ed.) Methods of Enzymatic Analyses. Academic Press, Weinheim, New York, pp. 885–894.
Mates, J. M., Perez-Gomez, C., De Castro, I. N. (1999) Antioxidant enzymes and human diseases. Clinical Biochem. 32, 595–603.
Mates, J. M. (2000) Effects of antioxidant enzymes in the molecular control of reactive oxygene species toxicology. Toxicol. 153, 83–104.
Miquel, J. (2002) Can antioxidant diet supplementation protect against age-related mitochondrial damage? Ann. N.Y. Acad. Sci. 959, 508–516.
Missirlis, F., Phillips, J. P., Jackie, H. (2001) Cooperative action of antioxidant defense systems in Drosophila. Curr. Biol. 11, 1212–1211.
Mutlu, A. G., Fiskin, K. (2009) Can vitamin E and selenium prevent cigarette smoke-derived oxidative mtDNA damage? Turk. J. Biochem. 34, 167–172.
Mutlu, A. G., Dukel, M. (2010) Effects of two important components related with mitochondria: CoQIO and acetyl 1 carnitine in antioxidant enzyme activities. Journal of Animal and Veterinary Advance. 9, 3109–3113.
Rodriguez, C., Mayo, J. C., Sainz, R. M., Antolin, I., Herrera, F., Martin, V., Reiter, R. J. (2004) Regulation of antioxidant enzymes: a significant role for melatonin. J. Pineal. Res. 36, 1–9.
Santos, J. H., Mandavilli, B. S., Van Houten, B. (2002) Measuring oxidative mtDNA damage and repair using QPCR. In: Copeland, W. C. (ed.) Mitochondrial DNA Methods and Protocols. Humana Press Inc, Totawa NJ, pp. 159–176.
Tiana, L., Caib, Q., Wei, H. (1998) The activities of antioxidant enzymes in most tissues displayed an age dependent decline. Free Radic. Biol. Med. 24, 1477–1484.
Tu, C. P., Akgul, B. (2005) Drosophila glutathione S transferases. Methods Enzymol. 401, 204–226.
Venkatraman, A., Landar, A., Davis, A. J., Chamlee, L., Sandersoni, T., Kim, H., Page, G., Pompilius, M., Ballinger, S., Darley-Usmar, V., Bailey, S. M. (2004) Modification of the mitochondrial proteome in response to the stress of ethanol-dependent hepatoxicity. J. Biol. Chem. 279, 22092–22101.
Wang, Y., Liu, V. W., Xue, W. C., Tsang, P. C., Cheung, A. N., Ngan, H. Y. (2005) The increase of mitochondrial DNA content in endometrial adenocarcinoma cells: a quantitative study using laser-captured microdissected tissues. Gynecol. Oncol. 98, 104–110.
Yakes, F. M., Van Houten, B. (1997) Mitochondrial DNA damage is more extensive and persists longer than nuclear DNA damage in human cells following oxidative stress. Proc. Natl Acad. Sci. US. 94, 514–519.