The Effect of Rare Earth Metal Doping in Bi2/3Cu3Ti4O12 Ceramic on Microstructure, Dielectric and Electrical Properties

Transactions on Electrical and Electronic Materials - Tập 24 - Trang 194-204 - 2023
Dinesh Prajapati1, Vishnu Shankar Rai1, Vinod Kumar1, Manish Kumar Verma1, Atendra Kumar2, N. B. Singh3, K. D. Mandal1
1Department of Chemistry, Indian Institute of Technology, Banaras Hindu University, Varanasi, India
2Department of Chemistry, Simdega College, Simdega, India
3Department of Chemistry and Biochemistry Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County (UMBC), Baltimore, USA

Tóm tắt

An Aurivillius oxide, Bi(2/3)-xGdxCu3Ti4O12 (x = 0.05, 0.10, and 0.20) ceramic designated as BGCTO-0.05, BGCTO-0.1 and BGCTO-0.2 has been fabricated by modified solid-state route resemble with semi wet route and characterized by using various techniques including XRD, SEM, EDX, TEM and XPS for getting information about phase formation, morphology, particle size distribution and oxidation state of elements of synthesized ceramics. X-ray diffraction pattern confirmed the single-phase formation of BGCTO ceramic. The crystalline nature of BGCTO ceramic for few selected compositions, x = 0.05, 0.10, and 0.20 were observed by TEM analysis. Further, particle size was determined with the help of Image J software and found to be 90.85 ± 5 nm, 75.35 ± 5 nm and 72.43 ± 5 nm, respectively for BGCTO-0.05, BGCTO-0.1 and BGCTO-0.2 ceramic. The dielectric permittivity (εr) as well as tangent loss (tan δ) was observed at room temperature and 1 kHz for all synthesized ceramics. The electrical behaviour of BGCTO ceramic revealed the presence of semiconducting grain separated by grain boundaries.

Tài liệu tham khảo

K.D. Mandal, A.K. Rai, D. Kumar, O. Parkash, J. Alloys Compd. (2009). https://doi.org/10.1016/j.jallcom.2008.12.007 A.K. Rai, K.D. Mandal, D. Kumar, O. Parkash, J. Alloys Compd. (2010). https://doi.org/10.1016/j.jallcom.2009.10.247 D. Huang, W.-L. Li, Z.-F. Liu, Y.-X. Li, C. Ton-That, J. Cheng, W.C.H. Choy, F.C.-C. Ling, J. Mater. Chem. A (2020). https://doi.org/10.1039/C9TA12808E L. Yang, X. Kong, F. Li, H. Hao, Z. Cheng, H. Liu, J.-F. Li, S. Zhang, Prog. Mater. Sci. (2019). https://doi.org/10.1016/j.pmatsci.2018.12.005 C. Zhao, J. Wu, ACS Appl Mater. Interfaces. 10(4), 3680–3688 (2018). https://doi.org/10.1021/acsami.7b18356 W. Dong, W. Hu, T.J. Frankcombe, D. Chen, C. Zhou, Z. Fu, L. Cândido, G. Hai, H. Chen, Y. Li, R.L. Withers, Y. Liu, J. Mater. Chem. A (2017). https://doi.org/10.1039/C6TA08337D X. Cheng, Z. Li, J. Wu, J. Mater. Chem. A (2015). https://doi.org/10.1039/C5TA00141B R. Schmidt, M.C. Stennett, N.C. Hyatt, J. Pokorny, J. Prado-Gonjal, M. Li, D.C. Sinclair, J. Eur. Ceram. Soc. (2012). https://doi.org/10.1016/j.jeurceramsoc.2012.03.040 P. Liang, Y. Li, F. Li, X. Chao, Z. Yang, Mater. Res. Bull. (2014). https://doi.org/10.1016/j.materresbull.2014.01.009 A.K. Rai, N.K. Singh, S.-K. Lee, K.D. Mandal, D. Kumar, O. Parkash, J. Alloys Compd. (2011). https://doi.org/10.1016/j.jallcom.2011.06.008 Y.Q. Tan, J.L. Zhang, W.T. Hao, G. Chen, W.B. Su, C.L. Wang, Mater. Chem. Phys. (2010). https://doi.org/10.1016/j.matchemphys.2010.08.041 E.A. Patterson, S. Kwon, C.-C. Huang, D.P. Cann, Appl. Phys. Lett. (2005). https://doi.org/10.1063/1.2126142 A. Cho, C.S. Han, M. Kang, W. Choi, J. Lee, J. Jeon, S. Yu, Y.S. Jung, Y.S. Cho, A.C.S. Appl, Mater. Interfaces (2018). https://doi.org/10.1021/acsami.8b02630 H.M. Kang, S.-H. Baek, J.H. Song, Y.S. Cho, J.-W. Choi, A.C.S. Comb, Sci. (2014). https://doi.org/10.1021/co500057u L. Yang, G. Huang, T. Wang, H. Hao, Y. Tian, Ceram. Int. (2016). https://doi.org/10.1016/j.ceramint.2016.03.094 A.K. Rai, K.D. Mandal, D. Kumar, O. Parkash, Mater. Chem. Phys. (2010). https://doi.org/10.1016/j.matchemphys.2010.02.037 J. Jumpatam, N. Chanlek, P. Thongbai, Appl. Surf. Sci. (2019). https://doi.org/10.1016/j.apsusc.2019.01.136 S.-Y. Chung, I.-D. Kim, S.-J.L. Kang, Nat. Mater. (2004). https://doi.org/10.1038/nmat1238 P. Thongbai, J. Jumpatam, B. Putasaeng, T. Yamwong, S. Maensiri, J. Appl. Phys. (2012). https://doi.org/10.1063/1.4768468 J. Jumpatam, B. Putasaeng, T. Yamwong, P. Thongbai, S. Maensiri, Ceram. Int. (2013). https://doi.org/10.1016/j.ceramint.2012.07.027 J. Liu, C. Duan, W.N. Mei, R.W. Smith, J.R. Hardy, J. Appl. Phys. (2005). https://doi.org/10.1063/1.2125117 S. Krohns, P. Lunkenheimer, S.G. Ebbinghaus, A. Loidl, Appl. Phys. Lett. (2007). https://doi.org/10.1063/1.3105993 W.C. Ribeiro, E. Joanni, R. Savu, P.R. Bueno, Solid State Commun. (2011). https://doi.org/10.1016/j.ssc.2010.10.034 K. Sun, L.-F. Xu, C. Mao, X. Feng, J.-Y. Liang, H.-B. Xiao, R.-L. Wang, D.-W. Shi, C.-P. Yang, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.02.074 K. Barner, X.J. Luo, X.P. Song, C. Hang, S.S. Chen, I.V. Medvedeva, C.P. Yang, J. Mater. Res. (2011). https://doi.org/10.1557/jmr.2010.28 W. Hao, J. Zhang, Y. Tan, W. Su, J. Am. Ceram. Soc. (2009). https://doi.org/10.1111/j.1551-2916.2009.03298.x J. Liu, C.-G. Duan, W.-G. Yin, W.N. Mei, R.W. Smith, J.R. Hardy, Phys. Rev. B (2004). https://doi.org/10.1103/PhysRevB.70.144106 Z. Yang, P. Liang, L. Yang, P. Shi, X. Chao, Z. Yang, J. Mater. Sci. Mater. Electron. (2015). https://doi.org/10.1007/s10854-014-2635-2 P. Gautam, A. Khare, S. Sharma, N.B. Singh, K.D. Mandal, Prog. Nat. Sci. Mater. Int. (2016). https://doi.org/10.1016/j.pnsc.2016.11.008 V. Kumar, A. Kumar, M.K. Verma, S. Singh, S. Pandey, V.S. Rai, D. Prajapati, T. Das, N.B. Singh, K.D. Mandal, Mater. Chem. Phys. (2020). https://doi.org/10.1016/j.matchemphys.2020.122804 V.S. Rai, S. Pandey, V. Kumar, M.K. Verma, A. Kumar, S. Singh, D. Prajapati, K.D. Mandal, J. Mater. Sci. Mater. Electron. (2021). https://doi.org/10.1007/s10854-021-05483-8 G. Sreenu, S. Saha, R.N. Bhowmik, J.P. Praveen, D. Das, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1007/s10854-022-09205-6 X. Huang, H. Zhang, M. Wei, Y. Lai, J. Li, J. Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.03.096 L. da Conceição, A.M. Silva, N.F.P. Ribeiro, M.M.V.M. Souza, Mater. Res. Bull. (2011). https://doi.org/10.1016/j.materresbull.2010.10.009 X. Zhao, H. Yang, Z. Cui, X. Wang, Z. Yi, Micromachines (2019). https://doi.org/10.3390/mi10010066 N. Tian, Y. Zhang, H. Huang, Y. He, Y. Guo, J. Phys. Chem. C (2014). https://doi.org/10.1021/jp500645p L. Singh, I.W. Kim, B.C. Sin, K.D. Mandal, U.S. Rai, A. Ullah, H. Chung, Y. Lee, RSC Adv. (2014). https://doi.org/10.1039/C4RA08915D W. Tuichai, S. Danwittayakul, N. Chanlek, M. Takesada, A. Pengpad, P. Srepusharawoot, P. Thongbai, ACS Omega (2021). https://doi.org/10.1021/acsomega.0c04666 V.S. Rai, D. Prajapati, V. Kumar, M.K. Verma, S. Pandey, T. Das, N.B. Singh, K.D. Mandal, J. Mater. Sci. Mater. Electron. (2022). https://doi.org/10.1021/acsomega.0c04666 A. Kumar, S.S. Yadava, P. Gautam, A. Khare, K.D. Mandal, J. Electroceramics (2019). https://doi.org/10.1007/s10832-018-0146-x S.S. Yadava, L. Singh, S. Sharma, K.D. Mandal, N.B. Singh, RSC Adv. (2016). https://doi.org/10.1039/C6RA09137G S. Singh, A. Kumar, S.K. Pandey, V. Kumar, M.K. Verma, A. Gupta, K.D. Mandal, Mater. Technol. (2021). https://doi.org/10.1080/10667857.2020.1774228 L. Singh, U.S. Rai, K. Mandal, B.C. Sin, S.-I. Lee, Y. Lee, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2014.04.001 Y. Slimani, A. Selmi, E. Hannachi, M.A. Almessiere, A. Baykal, I. Ercan, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01284-2 M.A. Ahmed, M.A. El Hiti, M.K. El Nimr, M.A. Amer, J. Magn. Magn. Mater. (1996). https://doi.org/10.1016/0304-8853(95)00479-3