The Effect of Ligand Mobility on the Cellular Interaction of Multivalent Nanoparticles

Macromolecular Bioscience - Tập 20 Số 4 - 2020
Sara Maslanka Figueroa1, Daniel F. Fleischmann1, Sebastian Beck1, Achim Goepferich1
1Department of Pharmaceutical Technology University of Regensburg Regensburg Universitaetsstrasse 31 93053 Germany

Tóm tắt

Abstract

Multivalent nanoparticle binding to cells can be of picomolar avidity making such interactions almost as intense as those seen with antibodies. However, reducing nanoparticle design exclusively to avidity optimization by the choice of ligand and its surface density does not sufficiently account for controlling and understanding cell–particle interactions. Cell uptake, for example, is of paramount significance for a plethora of biomedical applications and does not exclusively depend on the intensity of multivalency. In this study, it is shown that the mobility of ligands tethered to particle surfaces has a substantial impact on particle fate upon binding. Nanoparticles carrying angiotensin‐II tethered to highly mobile 5 kDa long poly(ethylene glycol) (PEG) chains separated by ligand‐free 2 kDa short PEG chains show a superior accumulation in angiotensin‐II receptor type 1 positive cells. In contrast, when ligand mobility is constrained by densely packing the nanoparticle surface with 5 kDa PEG chains only, cell uptake decreases by 50%. Remarkably, irrespective of ligand mobility and density both particle types have similar EC50 values in the 1–3 × 10−9 m range. These findings demonstrate that ligand mobility on the nanoparticle corona is an indispensable attribute to be considered in particle design to achieve optimal cell uptake via multivalent interactions.

Từ khóa


Tài liệu tham khảo

10.1126/science.1095833

10.1016/j.jconrel.2014.07.062

10.1016/j.chembiol.2006.11.015

10.1016/j.nano.2012.05.015

10.1016/j.addr.2019.05.010

10.1063/1.3293303

10.1021/acs.jpcc.5b11059

10.1021/acs.bioconjchem.8b00804

Curk T., 2018, Multivalency Concepts, Research & Applications, 75, 10.1002/9781119143505.ch3

10.1021/ja038223n

10.1016/0014-5793(90)81016-H

10.1016/S0927-7765(99)00156-3

10.1016/j.ijpharm.2005.10.010

10.1016/j.biomaterials.2011.04.082

10.1021/nn305663e

10.1021/acsami.8b18843

10.1038/nnano.2008.30

10.1016/j.biomaterials.2009.09.036

10.1016/S0142-9612(03)00348-X

10.1016/j.ejpb.2012.03.004

10.1021/ma3018876

10.1073/pnas.1902563116

10.1002/jbm.a.31504

10.1042/CS20110036

Gasparo M., 2000, Pharmacol. Rev., 52, 415

10.1016/S1357-2725(02)00309-6

10.1038/nnano.2008.30

10.3109/1061186X.2015.1035276

Ballermann B. J., 1984, Am. J. Physiol., 247, F110

10.1016/0001-8686(87)85003-0

10.1016/j.bbamem.2006.12.013

10.1016/j.colsurfa.2015.03.006

10.1103/PhysRevLett.109.238102

10.1016/j.tibtech.2007.03.010

10.1074/jbc.274.2.1164

10.1002/anie.201003445

10.1002/anie.201309464

10.1021/acsnano.8b03900

10.1016/j.yexcr.2006.09.025

10.1128/JVI.00109-11

10.1007/s12575-009-9008-x

Homo sapiens type‐1 angiotensin II receptor – Protein – NCBI https://www.ncbi.nlm.nih.gov/protein/?term=Homo+sapiens+type‐1+angiotensin+II+receptor(accessed: February 2019)

10.1016/0006-291X(88)90260-4

10.2217/nnm.10.113

10.1021/ma201169z

10.1039/C8SM02189A

10.1016/0026-265X(75)90038-7

10.1021/acsami.5b01423

10.1016/S0021-9258(19)83641-4

10.1021/la9041502