The Effect of High-Temperature Thermomechanical Treatment on the Microstructure and Mechanical Properties of Cu–Al–Ni–(B) Alloys with a Thermoelastic Martensitic Transformation
Tóm tắt
Polycrystalline boron-alloyed α + β Cu–Al–Ni compositions subjected to high-temperature thermomechanical treatment (HTMT) via forging and rolling are studied for the first time. Optical, scanning, and transmission electron microscopy and X-ray diffraction analysis were used in combination with measurements of tensile mechanical properties to study the peculiarities of the microstructure, phase composition, and mechanical properties of these alloys. The peculiarities of the microstructure and mechanical behavior of alloys differing in their aluminum and boron contents, which were subjected to HTMT, have been determined. The alloys were prepared in the fine-grained state, which determines the increase in the functional strength and plastic characteristics. A schedule of HTMT of bulk Cu–Al–Ni–(B) alloys is proposed.
Tài liệu tham khảo
H. Warlimont and L. Delaey, “Martensitic transformations in copper-silver and gold based alloys,” Prog. Mater. Sci. 18, 1–157 (1974).
V. A. Likhachev, S. L. Kuz’min, and Z. P. Kamentseva, Shape Memory Effect (Leningrad. Gos. Univ., Leningrad, 1987).
G. V. Kurdyumov and L. G. Khandros, “On the “thermoelastic” equilibrium on martensitic transformations,” Dokl. Akad. Nauk SSSR 66, 211–214 (1949). http://archive.ujp.bitp.kiev.ua/files/journals/53/si/ 53SI20p.pdf.
K. Otsuka, K. Shimizu, Yu. Suzuki, and Yu. Sekiguti, Shape Memory Alloys, Ed. by H. Funakobo (Kyoto, 1984).
P. Sedlák, H. Seiner, M. Landa, V. Novák, P. Šittner, and L. Mañosa, “Elastic constants of bcc austenite and 2H orthorhombic martensite in CuAlNi shape memory alloy,” Acta Mater. 53, 3643–3661 (2005). https://doi.org/10.1016/j.actamat.2005.04.013
L. Mañosa, S. Jarque-Farnos, E. Vives, and A. Planes, “Large temperature span and giant refrigerant capacity in elastocaloric Cu–Zn–Al shape memory alloys,” Appl. Phys. Lett. 103, 211904 (2013). https://doi.org/10.1063/1.4832339
R. Dasgupta, “A look into Cu-based shape memory alloys: Present scenario and future prospects,” J. Mater. Res. 29, 1681–1698 (2014). https://doi.org/10.1557/jmr.2014.189
V. Pushin, S. Prokoshkin, R. Valiev, V. Brailovskii, E. Valiev, A. Volkov, A. Glezer, S. Dobatkin, V. Dudarev, Yu. Zhu, Yu. Zainulin, Yu. Kolobov, V. Kondrat’ev, A. Korolev, A. Korshunov, N. Kourov, N. Kudrevatykh, A. Lotkov, L. Meisner, A. Popov, N. Popov, A. Razov, M. Khusainov, Yu. Chumlyakov, S. Andreev, A. Baturin, S. Belyaev, V. Grishkov, D. Gunderov, A. Dyupin, K. Ivanov, V. Itin, M. Kasymov, O. Kashin, I. Kireeva, A. Kozlov, T. Kuntsevich, N. Kuranova, N. Pushina, E. Ryklina, A. Uksusnikov, I. Khmelevskaya, A. Shelyakov, V. Shklover, E. Shorokhov, and L. I. Yurchenko, Titanium Nickelide Shape Memory Alloys, Vol. 1: Structure, Phase Transitions and Properties (Ural. Otd. Ross. Akad. Nauk, Ekaterinburg, 2006).
V. Pushin, N. Kuranova, E. Marchenkova, and A. Pushin, “Design and development of Ti–Ni, Ni–Mn–Ga and Cu–Al–Ni-based alloys with high and low temperature shape memory effects,” Materials 12, 2616 (2019). https://doi.org/10.3390/ma12162616
A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, A. E. Svirid, A. N. Uksusnikov, Yu. M. Ustyugov, and D. V. Gunderov, “Effect of the thermomechanical treatment on structural and phase transformations in Cu–14Al–3Ni shape memory alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 119, 374–382 (2018). https://doi.org/10.1134/S0031918X18040142
A. E. Svirid, A. V. Luk’yanov, V. G. Pushin, E. S. Belosludtseva, N. N. Kuranova, and A. V. Pushin, “Effect of the temperature of isothermal upsetting on the structure and the properties of the shape memory Cu–14 wt % Al–4 wt % Ni alloy,” Phys. Met. Metallogr. 120, 1159–1165 (2019). https://doi.org/10.1134/S0031918X19120159
A. E. Svirid, V. G. Pushin, N. N. Kuranova, E. S. Belosludtseva, A. V. Pushin, and A. V. Lukyanov, “The effect of plastification of Cu–14Al–4Ni alloy with the shape memory effect in high-temperature isothermal precipitation,” Tech. Phys. Lett. 46, 118–121 (2020). https://doi.org/10.1134/s1063785020020145
A. E. Svirid, A. V. Lukyanov, V. G. Pushin, N. N. Kuranova, V. V. Makarov, A. V. Pushin, and A. N. Uksusnikov, “Application of isothermal upset for megaplastic deformation of Cu–Al–Ni β alloys,” Tech. Phys. 65 (7), 1044–1050 (2020). https://doi.org/10.1134/s1063784220070245
A. E. Svirid, V. G. Pushin, N. N. Kuranova, V. V. Makarov, and A. N. Uksusnikov, “The effect of heat treatment on the structure and mechanical properties of nanocrystalline Cu–14Al–3Ni alloy subjected to high-pressure torsion,” Phys. Met. Metallogr. 122, 883–890 (2021). https://doi.org/10.1134/s0031918x21090131
V. Pushin, N. Kuranova, A. Svirid, A. Uksusnikov, and Yu. Ustyugov, “Design and development of high-strength and ductile ternary and multicomponent eutectoid Cu-based shape memory alloys: Problems and perspectives,” Metals 12, 1289 (2022). https://doi.org/10.3390/met12081289
A. E. Svirid, N. N. Kuranova, V. V. Makarov, and V. G. Pushin, “The effect of boron addition on the structure and mechanical properties of Cu–Al–Ni–B alloys with a thermoelastic martensitic transformation,” Phys. Met. Metallogr. 124, 504–513 (2023). https://doi.org/10.1134/S0031918X23600549
S. N. Saud, E. Hamzah, T. Abubakar, and H. R. Bakh-sheshi-Rad, “Correlation of microstructural and corrosion characteristics of quaternary shape memory alloys Cu–Al–Ni–X (X = Mn or Ti),” Trans. Nonferrous Met. Soc. China 25, 1158–1170 (2015). https://doi.org/10.1016/s1003-6326(15)63711-6
G. Lojen, I. Anžel, A. Kneissl, A. Križman, E. Unterweger, B. Kosec, and M. Bizjak, “Microstructure of rapidly solidified Cu–Al–Ni shape memory alloy ribbons,” J. Mater. Process. Technol. 162-163, 220–229 (2005). https://doi.org/10.1016/j.jmatprotec.2005.02.196
F. C. Lovey, A. M. Condó, J. Guimpel, and M. J. Yacamán, “Shape memory effect in thin films of a Cu–Al–Ni alloy,” Mater. Sci. Eng., A 481–482, 426–430 (2008). https://doi.org/10.1016/j.msea.2007.01.175
Z. Li, Z. Pan, N. Tang, Y. Jiang, N. Liu, M. Fang, and F. Zheng, “Cu–Al–Ni–Mn shape memory alloy processed by mechanical alloying and powder metallurgy,” Mater. Sci. Eng., A 417, 225–229 (2006). https://doi.org/10.1016/j.msea.2005.10.051
K. Mukunthan and L. C. Brown, “Preparation and properties of fine grain β-CuAlNi strain-memory alloys,” Metall. Trans. A 19, 2921–2929 (1988). https://doi.org/10.1007/bf02647718
Z. Wang, X. Liu, and J. Xie, “Effects of solidification parameters on microstructure and mechanical properties of continuous columnar-grained Cu–Al–Ni alloy,” Prog. Nat. Sci.: Mater. Int. 21, 368–374 (2011). https://doi.org/10.1016/s1002-0071(12)60071-9
Y. S. Sun, G. W. Lorimer, and N. Ridley, “Microstructure and its development in Cu–Al–Ni alloys,” Metall. Trans. A 21, 575–588 (1990). https://doi.org/10.1007/bf02671930