The Effect of Chelate Compounds on the Hydration Process of MgO–Al2O3 Phase System under Hydrothermal Conditions
Tóm tắt
Từ khóa
Tài liệu tham khảo
Wagner, 1936, Über den Mechanismus der Bildung von IonenverbindungenhöhererOrdnung (Doppelsalze, Spinelle, Silikate), Z. Phys. Chem., 34, 309, 10.1515/zpch-1936-3422
Li, 2018, Preparation and characterization of novel nonstoichiometric magnesium aluminate spinels, Ceram. Int., 44, 15104, 10.1016/j.ceramint.2018.05.145
Henkel, 2009, MgAl2O4-Spinel Synthesized by High-Energy Ball Milling and Reaction Sintering, J. Am. Ceram. Soc., 92, 805, 10.1111/j.1551-2916.2009.02965.x
Liu, 2016, Pressureless sintered magnesium aluminate spinel with enhanced mechanical properties obtained by the two-step sintering metod, J. Alloys Compd., 680, 133, 10.1016/j.jallcom.2016.04.192
Ganesh, 2001, A new sintering aid for magnesium aluminate spinel, Ceram. Int., 27, 773, 10.1016/S0272-8842(01)00029-3
Mohan, 2016, A comparative study on the effect of different additives on the formation and densification of magnesium aluminate spinel, Ceram. Int., 42, 13932, 10.1016/j.ceramint.2016.05.206
Sarkar, 2003, Effect of additives on the densification of reaction sintered and presynthesisedspinels, Ceram. Int., 29, 55, 10.1016/S0272-8842(02)00089-5
Kim, 2014, Effect of additives on the sintering of MgAl2O4, J. Alloy. Compd., 587, 594, 10.1016/j.jallcom.2013.10.250
Madej, D., and Tyrała, K. (2020). In Situ Spinel Formation in a Smart Nano-Structured Matrix for No-Cement Refractory Castables. Materials, 13.
Prorok, 2020, Influence of hydrothermal conditions on the phase composition of materials from the system MgO-Al2O3-SiO2-H2O, J. Aust. Ceram. Soc., 56, 829, 10.1007/s41779-019-00404-9
Madej, 2018, An experimental investigation of hydration mechanism of the binary cementitious pastes containing MgO and Al2O3 micro-powders, J. Therm. Anal. Calorim., 134, 1481, 10.1007/s10973-018-7618-8
Lindsay, S.J. (2011). Two Perspectives on the evolution and future of alumina. Light Metals, Springer.
Ye, 2006, Hydration of hydratable alumina in the presence of various forms of MgO, Ceram. Int., 32, 257, 10.1016/j.ceramint.2005.02.013
Pandolfelli, 2011, Citric acid as anti-hydration additive for magnesia containing refractory castables, Ceram. Int., 37, 1839, 10.1016/j.ceramint.2011.03.050
Bucur, 2017, Influence of small concentration addition of tartaric acid on the 220 °C hydrothermal synthesis of hydroxyapatite, Mater. Charact., 132, 76, 10.1016/j.matchar.2017.07.047
Vargas, 2018, Citric acid: A promising copper scavenger, Comput. Theor. Chem., 1133, 47, 10.1016/j.comptc.2018.04.011
He, 2004, Hydration behaviour of magnesia in binder systems for basic castables, Can. Metall. Q., 43, 173, 10.1179/cmq.2004.43.2.173
Serena, 2009, Thermodynamic evaluation of the Al2O3–H2O binary system at pressures up to 30 MPa, Ceram. Int., 35, 3081, 10.1016/j.ceramint.2009.04.014
Laubengayer, 1943, A hydrothermal study in the system alumina-water, Am. Chem. Soc. J., 65, 247, 10.1021/ja01242a031
Ervin, 1951, The system Al2O3–H2O, J. Geol., 59, 381
Korytkova, 2005, Preparation of Nanocrystalline Alumina under Hydrothermal Conditions, Inorg. Mater., 41, 460, 10.1007/s10789-005-0152-7
Collier, 2016, Transition and decomposition temperatures of cement phases—A collection of thermal analysis data, Ceram. Silik., 60, 338, 10.13168/cs.2016.0050
Madej, 2017, Size-dependent hydration mechanism and kinetics for reactive MgO and Al2O3 powders with respect to the calcia-free hydraulic binder systems designed for refractory castables, J. Mater. Sci., 41, 176
Yang, 2002, A study by in situ techniques of the thermal evolution of the structure of a Mg–Al–CO3 layered double hydroxide, Chem. Eng. Sci., 57, 2945, 10.1016/S0009-2509(02)00185-9
Hollingbery, 2010, The thermal decomposition of huntite and hydromagnesite—A review, Thermochim. Acta, 509, 1, 10.1016/j.tca.2010.06.012
Frost, 1999, Infrared emission spectroscopic study of brucite, Spectrochim. Acta Part A Mol. Biomol. Spectrosc., 55, 2195, 10.1016/S1386-1425(99)00016-5
Frost, 2001, Near-infrared and mid infrared spectroscopic study sepiolites and palygorskites, Vib. Spectrosc., 27, 1, 10.1016/S0924-2031(01)00110-2
Liu, 2012, Dechlorinating transformation of propachlor through nucleophilic substitution by dithionite on the surface of alumina, J. Soils Sediments, 12, 724, 10.1007/s11368-012-0506-0
Kloprogge, 1999, Fourier Transform Infrared and Raman Spectroscopic Study of the Local Structure of Mg-, Ni-, and Co-Hydrotalcites, J. Solid State Chem., 146, 506, 10.1006/jssc.1999.8413