The Early Origins of Terrestrial C<sub>4</sub> Photosynthesis

Annual Review of Earth and Planetary Sciences - Tập 35 Số 1 - Trang 435-461 - 2007
Brett J. Tipple1, Mark Pagani1
1Department of Geology and Geophysics, Yale University, New Haven, Connecticut 06520.

Tóm tắt

The C4 photosynthetic pathway is a series of structural and biochemical modifications around the more primitive C3 pathway that improve the photosynthetic efficiency under specific climatic conditions. Hence, the origin and subsequent geographical expansion of the C4 plants likely reflects a record of climate change. Multiple paleoatmospheric pCO2 proxies indicate a critical CO2 threshold was breached ∼30 Ma, that potentially selected for CO2-concentrating mechanisms to overcome photorespiratory stresses imposed on the basic C3 pathway. Details of the C4 pathway's earliest origins remain enigmatic given the paucity of the geologic record. Nonetheless, δ13C proxy records from paleosol carbonates, ungulate teeth, and plant-derived compounds indicate C4 plants likely represented an important component of plant biomass by the Early Miocene. Low CO2 levels appear to be a precondition for the development of the C4 photosynthetic pathway; however, comparisons of δ13C proxy records indicate that the timing of C4 geographical expansion was not globally synchronous, and thus point toward more regional controls on the development of C4-dominated ecosystems. Terrestrial and marine records indicate that continental aridity and wind strength increased during the Late Miocene. These conditions would have likely increased fire occurrence and fire intensity leading to the clearing of large tree stands and the expansion of C4 grasses in warm-season precipitation regimes.

Từ khóa


Tài liệu tham khảo

Axelrod DI, 1939, Carnegie Inst. Wash. Publ., 515, 1

10.1038/nature02260

10.2475/ajs.301.2.182

10.1111/j.1469-8137.2004.01252.x

10.1016/0012-821X(84)90089-X

10.1016/0016-7037(91)90498-T

10.2475/ajs.291.4.377

10.1029/92GB01102

10.1016/0031-0182(92)90211-M

10.1016/B978-012614440-6/50014-8

10.1007/s004420050868

10.1007/s004420050869

10.1038/38229

10.1029/GM078p0217

10.1038/341138a0

10.1038/361344a0

10.2343/geochemj.35.451

Clementz MT, 2001, North American Paleontological Convention 2001, Paleontology in the New Millennium, 21, 42

10.1016/0146-6380(94)90008-6

10.1016/0016-7037(53)90001-5

10.1146/annurev.es.23.110192.000431

10.1016/0016-7037(74)90010-6

10.1890/03-0802

10.1017/S0022336000021223

10.1126/science.156.3780.1322

10.1007/BF00346246

10.1007/BF00320986

10.1007/0-387-27048-5_10

10.1007/s004420050311

10.1146/annurev.es.24.110193.002211

10.1016/0169-5347(91)90183-X

10.2475/ajs.299.10.805

10.1071/PP9860281

10.1071/PP9830205

10.1146/annurev.pp.40.060189.002443

10.1666/05006.1

10.2307/2845533

10.1006/qres.1996.1862

10.1016/S0016-7037(00)00573-1

10.1130/G19580.1

10.1016/S0031-0182(04)00045-8

10.1073/pnas.94.13.6809

10.1098/rsta.2001.0965

10.1046/j.1365-2486.2003.00640.x

10.1016/S0304-4173(87)80009-5

Hatch MD, 1976, Encyclopedia of Plant Physiology, 3, 144

10.1071/PP9820139

10.1016/0025-3227(93)90153-M

10.1016/B978-012614440-6/50010-0

10.1029/GM032p0419

10.1130/0091-7613(1999)027<0471:CAOILP>2.3.CO;2

10.1126/science.1060143

10.2307/2666186

10.1007/BF00398720

10.1016/0301-9268(87)90001-5

10.1086/374192

10.1111/j.1461-0248.2005.00767.x

10.1016/0033-5894(91)90069-H

10.1126/science.264.5161.955

Kirkham D, Powers WL. 1972. Advanced Soil Physics. New York: Wiley-Intersci. 534 pp.

10.1130/0016-7606(2001)113<0728:CCIRTO>2.0.CO;2

10.1146/annurev.earth.26.1.573

10.2138/rmg.2002.48.12

10.1016/S0012-821X(96)00231-2

10.2307/4109686

10.1007/BF00627732

10.1016/S0146-6380(96)00135-0

10.1007/BF02886272

10.2307/3515242

MacGinitie HD, 1962, Univ. Calif. Publ. Geol. Sci., 35, 67

10.1016/0016-7037(82)90241-1

10.1016/0012-821X(74)90078-8

10.1038/367162a0

10.1038/276816a0

10.2307/1310735

10.1098/rstb.2005.1737

10.1126/science.285.5429.876

10.1016/S0016-7037(99)00151-9

10.1126/science.1110063

10.1086/338280

10.1111/j.1365-3040.1984.tb01194.x

10.1038/35021000

Piperno DR, 1988, Phytolith Analysis: An Archaeological and Geological Perspective.

10.1038/361061a0

Puyravaud JP, 1995, Curr. Sci. India, 68, 745

10.1130/0016-7606(1995)107<1381:LMECIN>2.3.CO;2

10.1016/0031-0182(94)00108-K

10.1130/0016-7606(1989)101<0464:SVITCA>2.3.CO;2

10.1038/342163a0

10.1016/0031-0182(94)90021-3

Raven PH, Evert RF, Eichhorn SE. 2003. Biology of Plants. New York: Freeman. 706 pp.

10.1029/93RG03257

10.1029/98PA00123

10.1126/science.247.4948.1325

10.1016/0016-7037(92)90142-6

10.1130/1052-5173(2004)014<4:CAAPDO>2.0.CO;2

10.1038/378603a0

10.1055/s-2001-15206

10.1016/B978-012614440-6/50017-3

10.1016/B978-012614440-6/50011-2

Smith FA, 2001, Phytoliths: Applications in Earth Science and Human History, 317

10.1016/S0031-0182(04)00044-6

Sharkey TD. 1988. Estimating the rate of photorespiration in leaves. Plant Physiol. 147–52

10.1007/978-3-642-59171-6_8

10.1016/S0031-0182(04)00043-4

10.1038/23005

Taiz L, Zeiger E. 1998. Plant Physiology. Sunderland, MA: Sinauer Assoc. 764 pp.2nd ed.

10.1007/BF00351210

10.1126/science.233.4766.876

10.1016/j.yqres.2003.12.002

10.1007/0-306-48163-4

10.1038/35107073

10.1016/0031-0182(94)90100-7

10.1016/0031-0182(94)90099-X

10.1130/G22254.1

10.1007/BF00329701