The EZ diffusion model provides a powerful test of simple empirical effects
Tóm tắt
Over the last four decades, sequential accumulation models for choice response times have spread through cognitive psychology like wildfire. The most popular style of accumulator model is the diffusion model (Ratcliff Psychological Review, 85, 59–108, 1978), which has been shown to account for data from a wide range of paradigms, including perceptual discrimination, letter identification, lexical decision, recognition memory, and signal detection. Since its original inception, the model has become increasingly complex in order to account for subtle, but reliable, data patterns. The additional complexity of the diffusion model renders it a tool that is only for experts. In response, Wagenmakers et al. (Psychonomic Bulletin & Review, 14, 3–22, 2007) proposed that researchers could use a more basic version of the diffusion model, the EZ diffusion. Here, we simulate experimental effects on data generated from the full diffusion model and compare the power of the full diffusion model and EZ diffusion to detect those effects. We show that the EZ diffusion model, by virtue of its relative simplicity, will be sometimes better able to detect experimental effects than the data–generating full diffusion model.
Tài liệu tham khảo
Ball, K., & Sekuler, R. (1982). A specific and enduring improvement in visual motion discrimination. Science, 218, 697–698.
Donkin, C., Averell, L., Brown, S., & Heathcote, A. (2009). Getting more from accuracy and response time data: methods for fitting the linear ballistic accumulator. Behavior Resarch Methods, 41, 1095–1110.
Donkin, C., Brown, S., & Heathcote, A. (2011). Drawing conclusions from choice response time models: a tutorial using the linear ballistic accumulator model. Journal of Mathematical Psychology, 55, 140–151.
Geddes, J., Ratcliff, R., Allerhand, M., Childers, R., Wright, R. J., Frier, B. M., & et al. (2010). Modeling the effects of hypoglycemia on a two–choice task in adult humans. Neuropsychology, 24, 652–660.
Geman, S., Bienenstock, E., & Doursat, R. (1992). Neural networks and the bias/variance dilemma. Neural Computation, 4(1), 1–58.
Gigerenzer, G., & Brighton, H. (2009). Homo heuristicus: why biased minds make better inferences. Topics in Cognitive Science, 1(1), 107–143.
Grasman, R. P. P. P., Wagenmakers, E. J., & van der Maas, H. L. J. (2009). On the mean and variance of response times under the diffusion model with an application to parameter estimation. Journal of Mathematical Psychology, 53, 55–68.
Hastie, T., Tibshirani, R., Friedman, J., & Franklin, J. (2005). The elements of statistical learning: data mining, inference and prediction. The Mathematical Intelligencer, 27(2), 83–85.
Hawkins, G. E., Forstmann, B. U., Wagenmakers, E. J., Ratcliff, R., & Brown, S. D. (2015). Revisiting the evidence for collapsing boundaries and urgency signals in perceptual decision–making. The Journal of Neuroscience, 35, 2476–2484.
Heathcote, A., Brown, S. D., & Mewhort, D. J. K. (2002). Quantile maximum likelihood estimation of response time distributions. Psychonomic Bulletin & Review, 9, 394–401.
Kamienkowski, J. E., Pashler, H., Dehaene, S., & Sigman, M. (2011). Effects of practice on task architecture: Combined evidence from interference experiments and random–walk models of decision making. Cognition, 119, 81–95.
Klauer, K. C., Voss, A., Schmitz, F., & Teige-Mocigemba, S. (2007). Process components of the implicit association test: a diffusion–model analysis. Journal of Personality and Social Psychology, 93, 353–368.
Laming, D. R. J. (1968). Information theory of choice–reaction times. London: Academic Press.
Link, S. W. (1975). The relative judgement theory of two choice response time. Journal of Mathematical Psychology, 12, 114–135.
Luce, R. D. (1986). Response times. New York: Oxford University Press.
Matzke, D., & Wagenmakers, E. J. (2009). Psychological interpretation of ex–Gaussian and shifted Wald parameters: a diffusion model analysis. Psychonomic Bulletin & Review, 16, 798–817.
Mulder, M. J., Wagenmakers, E. J., Ratcliff, R., Boekel, W., & Forstmann, B. U. (2012). Bias in the brain: A diffusion model analysis of prior probability and potential payoff. Journal of Neuroscience, 32, 2335–2343.
Philiastides, M. G., Ratcliff, R., & Sajda, P. (2006). Neural representation of task difficulty and decision–making during perceptual categorization: a timing diagram. Journal of Neuroscience, 26, 8965–8975.
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85, 59–108.
Ratcliff, R. (2008). The EZ diffusion method: too EZ? Psychonomic Bulletin & Review, 15, 1218–1228.
Ratcliff, R., Gomez, P., & Mckoon, G. (2004). Diffusion model account of lexical decision. Psychological Review, 111, 159–182.
Ratcliff, R., Hasegawa, Y. T., Hasegawa, Y. P., Smith, P. L., & Segraves, M. A. (2007). Dual diffusion model for single–cell recording data from the superior colliculus in a brightness–discrimination task. Journal of Neurophysiology, 97, 1756– 1774.
Ratcliff, R., & Rouder, J. N. (1998). Modeling response times for two–choice decisions. Psychological Science, 9, 347–356.
Ratcliff, R., Thapar, A., & Mckoon, G. (2006). Aging, practice, and perceptual tasks: a diffusion model analysis. Psychology and Aging, 21, 353–371.
Ratcliff, R., Thapar, A., & Mckoon, G. (2010). Individual differences, aging, and IQ in two–choice tasks. Cognitive Psychology, 60, 127–157.
Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9, 438–481.
Ratcliff, R., & van Dongen, H. P. A. (2009). Sleep deprivation affects multiple distinct cognitive processes. Psychonomic Bulletin & Review, 16, 742–751.
Rouder, J. N., Morey, R. D., Verhagen, J., Swagman, A. R., & Wagenmakers, E. J. (2015). Bayesian analysis of factorial designs. Psychological Methods.
Rubenstein, H., Garfield, L., & Millikan, J. A. (1970). Homographic entries in the internal lexicon. Journal of Verbal Learning and Verbal Behavior, 9, 487–494.
Schmiedek, F., Lövdén, M., & Lindenberger, U. (2009). On the relation of mean reaction time and intraindividual reaction time variability. Psychology and Aging, 136, 841–857.
Schmiedek, F., Oberauer, K., Wilhelm, O., Süß, H. M., & Wittmann, W. W. (2007). Individual differences in components of reaction time distributions and their relations to working memory and intelligence. Journal of Experimental Psychology: General, 136, 414–429.
Schouten, J. F., & Bekker, J. A. M. (1967). Reaction time and accuracy. Acta Psychologica, 27, 143–153.
Smith, P. L., & Ratcliff, R. (2009). An integrated theory of attention and decision making in visual signal detection. Psychological Review, 116, 293–317.
Usher, M., & McClelland, J. L. (2001). On the time course of perceptual choice: the leaky competing accumulator model. Psychological Review, 108, 550–592.
van Ravenzwaaij, D., Boekel, W., Forstmann, B., Ratcliff, R., & Wagenmakers, E. J. (2014). Action video games do not improve the speed of information processing in simple perceptual tasks. Journal of Experimental Psychology: General, 143, 1794–1805.
van Ravenzwaaij, D., Dutilh, G., & Wagenmakers, E. J. (2012). A diffusion model decomposition of the effects of alcohol on perceptual decision making. Psychopharmacology, 219, 1017–2025.
van Ravenzwaaij, D., & Oberauer, K. (2009). How to use the diffusion model: parameter recovery of three methods: EZ, fast-dm, and DMAT. Journal of Mathematical Psychology, 53, 463–473.
van Ravenzwaaij, D., van der Maas, H. L. J., & Wagenmakers, E. J. (2011). Does the name–race implicit association test measure racial prejudice? Experimental Psychology, 58, 271–277.
van Ravenzwaaij, D., van der Maas, H. L. J., & Wagenmakers, E. J. (2012). Optimal decision making in neural inhibition models. Psychological Review, 119, 201–215.
Vandekerckhove, J., & Tuerlinckx, F. (2007). Fitting the Ratcliff diffusion model to experimental data. Psychonomic Bulletin & Review, 14, 1011–1026.
Vandekerckhove, J., & Tuerlinckx, F. (2008). Diffusion model analysis with MATLAB: a DMAT primer. Behavior Research Methods, 40, 61–72.
Vandekerckhove, J., Tuerlinckx, F., & Lee, M. D. (2011). Hierarchical diffusion models for two–choice response times. Psychological Methods, 16, 44–62.
Voss, A., & Voss, J. (2007). Fast–dm: a free program for efficient diffusion model analysis. Behavior Research Methods, 39, 767– 775.
Voss, A., & Voss, J. (2008). A fast numerical algorithm for the estimation of diffusion model parameters. Journal of Mathematical Psychology, 52, 1–9.
Voss, A., Voss, J., & Lerche, V. (2015). Assessing cognitive processes with diffusion model analyses: A tutorial based on fast–dm–30. Frontiers in Psychology, 6, 336.
Wagenmakers, E. J., Lodewyckx, T., Kuriyal, H., & Grasman, R. P. P. P. (2010). Bayesian hypothesis testing for psychologists: a tutorial on the Savage–Dickey method. Cognitive Psychology, 60, 158–159.
Wagenmakers, E. J., Ratcliff, R., Gomez, P., & Mckoon, G. (2008). A diffusion model account of criterion shifts in the lexical decision task. Journal of Memory and Language, 58, 140–159.
Wagenmakers, E. J., van der Maas, H. L. J., & Grasman, R. P. P. P. (2007). An EZ–diffusion model for response time and accuracy. Psychonomic Bulletin & Review, 14, 3–22.
Wagenmakers, E. J., van der Maas, H. L. J., Dolan, C., & Grasman, R. P. P. P. (2008). EZ does it! Extensions of the EZ–diffusion model. Psychonomic Bulletin & Review, 15, 1229– 1235.
White, C. N., Ratcliff, R., Vasey, M. W., & Mckoon, G. (2010). Using diffusion models to understand clinical disorders. Journal of Mathematical Psychology, 54, 39–52.
Wickelgren, W. A. (1977). Speed–accuracy tradeoff and information processing dynamics. Acta Psychologica, 41, 67–85.
Zhang, S., Lee, M. D., Vandekerckhove, J., Maris, G., & Wagenmakers, E. J. (2014). Time-Varying boundaries for diffusion models of decision making and response time. Frontiers in Psychology, 5(1364), 1364.