The E3 ubiquitin ligase, HECTD1, is involved in ABCA1-mediated cholesterol export from macrophages
Biochimica et Biophysica Acta (BBA) - Molecular and Cell Biology of Lipids - Tập 1863 - Trang 359-368 - 2018
Tài liệu tham khảo
Wong, 2014, Epidemiological studies of CHD and the evolution of preventive cardiology, Nat. Rev. Cardiol., 11, 276, 10.1038/nrcardio.2014.26
Moore, 2013, Macrophages in atherosclerosis: a dynamic balance, Nat. Rev. Immunol., 13, 709, 10.1038/nri3520
Out, 2008, Coexistence of foam cells and hypocholesterolemia in mice lacking the ABC transporters A1 and G1, Circ. Res., 102, 113, 10.1161/CIRCRESAHA.107.161711
Westerterp, 2013, Deficiency of ATP-binding cassette transporters A1 and G1 in macrophages increases inflammation and accelerates atherosclerosis in mice, Circ. Res., 112, 1456, 10.1161/CIRCRESAHA.113.301086
Kennedy, 2005, ABCG1 has a critical role in mediating cholesterol efflux to HDL and preventing cellular lipid accumulation, Cell Metab., 1, 121, 10.1016/j.cmet.2005.01.002
Yvan-Charvet, 2007, Combined deficiency of ABCA1 and ABCG1 promotes foam cell accumulation and accelerates atherosclerosis in mice, J. Clin. Invest., 117, 3900
Gelissen, 2006, ABCA1 and ABCG1 synergize to mediate cholesterol export to apoA-I, Arterioscler. Thromb. Vasc. Biol., 26, 534, 10.1161/01.ATV.0000200082.58536.e1
Kobayashi, 2006, Efflux of sphingomyelin, cholesterol, and phosphatidylcholine by ABCG1, J. Lipid Res., 47, 1791, 10.1194/jlr.M500546-JLR200
Takahashi, 2006, Purification and ATPase activity of human ABCA1, J. Biol. Chem., 281, 10760, 10.1074/jbc.M513783200
Rust, 1999, Tangier disease is caused by mutations in the gene encoding ATP-binding cassette transporter 1, Nat. Genet., 22, 352, 10.1038/11921
Bodzioch, 1999, The gene encoding ATP-binding cassette transporter 1 is mutated in Tangier disease, Nat. Genet., 22, 347, 10.1038/11914
Kruit, 2012, Loss of both ABCA1 and ABCG1 results in increased disturbances in islet sterol homeostasis, inflammation, and impaired beta-cell function, Diabetes, 61, 659, 10.2337/db11-1341
Vance, 2010, Formation and function of apolipoprotein E-containing lipoproteins in the nervous system, Biochim. Biophys. Acta, 1801, 806, 10.1016/j.bbalip.2010.02.007
Ye, 2011, ATP-binding cassette transporters A1 and G1, HDL metabolism, cholesterol efflux, and inflammation: important targets for the treatment of atherosclerosis, Curr. Drug Targets, 12, 647, 10.2174/138945011795378522
Oram, 2006, ATP-binding cassette cholesterol transporters and cardiovascular disease, Circ. Res., 99, 1031, 10.1161/01.RES.0000250171.54048.5c
Lee, 2015, Liver X receptors at the intersection of lipid metabolism and atherogenesis, Atherosclerosis, 242, 29, 10.1016/j.atherosclerosis.2015.06.042
Wellington, 2002, ABCA1 mRNA and protein distribution patterns predict multiple different roles and levels of regulation, Lab. Investig., 82, 273, 10.1038/labinvest.3780421
Ogura, 2011, Proteasomal inhibition promotes ATP-binding cassette transporter A1 (ABCA1) and ABCG1 expression and cholesterol efflux from macrophages in vitro and in vivo, Arterioscler. Thromb. Vasc. Biol., 31, 1980, 10.1161/ATVBAHA.111.228478
Mizuno, 2011, Ubiquitination is associated with lysosomal degradation of cell surface-resident ATP-binding cassette transporter A1 (ABCA1) through the endosomal sorting complex required for transport (ESCRT) pathway, Hepatology, 54, 631, 10.1002/hep.24387
Hsieh, 2014, Cellular cholesterol regulates ubiquitination and degradation of the cholesterol export proteins ABCA1 and ABCG1, J. Biol. Chem., 289, 7524, 10.1074/jbc.M113.515890
Hershko, 1998, The ubiquitin system, Annu. Rev. Biochem., 67, 425, 10.1146/annurev.biochem.67.1.425
Foot, 2017, Ubiquitination and the regulation of membrane proteins, Physiol. Rev., 97, 253, 10.1152/physrev.00012.2016
Zheng, 2017, Ubiquitin ligases: structure, function, and regulation, Annu. Rev. Biochem., 86, 129, 10.1146/annurev-biochem-060815-014922
Metzger, 2012, HECT and RING finger families of E3 ubiquitin ligases at a glance, J. Cell Sci., 125, 531, 10.1242/jcs.091777
Teixeira, 2013, Ubiquitin ligases and cell cycle control, Annu. Rev. Biochem., 82, 387, 10.1146/annurev-biochem-060410-105307
Clague, 2012, Governance of endocytic trafficking and signaling by reversible ubiquitylation, Dev. Cell, 23, 457, 10.1016/j.devcel.2012.08.011
Aleidi, 2015, The E3 ubiquitin ligases, HUWE1 and NEDD4-1, are involved in the post-translational regulation of the ABCG1 and ABCG4 lipid transporters, J. Biol. Chem., 290, 24604, 10.1074/jbc.M115.675579
Gelissen, 2010, Expression and stability of two isoforms of ABCG1 in human vascular cells, Atherosclerosis, 208, 75, 10.1016/j.atherosclerosis.2009.06.028
Larrede, 2009, Stimulation of cholesterol efflux by LXR agonists in cholesterol-loaded human macrophages is ABCA1-dependent but ABCG1-independent, Arterioscler. Thromb. Vasc. Biol., 29, 1930, 10.1161/ATVBAHA.109.194548
Luu, 2017, Manipulating cholesterol status within cells, Methods Mol. Biol., 1583, 41, 10.1007/978-1-4939-6875-6_4
Burns, 2013, Species variation in ABCG1 isoform expression: implications for the use of animal models in elucidating ABCG1 function, Atherosclerosis, 226, 408, 10.1016/j.atherosclerosis.2012.12.009
Howe, 2015, The regulatory domain of squalene monooxygenase contains a re-entrant loop and senses cholesterol via a conformational change, J. Biol. Chem., 290, 27533, 10.1074/jbc.M115.675181
Tabet, 2014, HDL-transferred microRNA-223 regulates ICAM-1 expression in endothelial cells, Nat. Commun., 5, 3292, 10.1038/ncomms4292
Cochran, 2014, Apolipoprotein A-I increases insulin secretion and production from pancreatic beta-cells via a G-protein-cAMP-PKA-FoxO1-dependent mechanism, Arterioscler. Thromb. Vasc. Biol., 34, 2261, 10.1161/ATVBAHA.114.304131
Kockx, 2017, Measurement of macrophage-specific in vivo reverse cholesterol transport in mice, Methods Mol. Biol., 1583, 287, 10.1007/978-1-4939-6875-6_21
Wong, 2004, Statins inhibit synthesis of an oxysterol ligand for the liver x receptor in human macrophages with consequences for cholesterol flux, Arterioscler. Thromb. Vasc. Biol., 24, 2365, 10.1161/01.ATV.0000148707.93054.7d
Yang, 2017, ABC-transporter mediated sterol export from cells using radiolabeled sterols, Methods Mol. Biol., 1583, 275, 10.1007/978-1-4939-6875-6_20
Rye, 1990, Interaction of apolipoprotein A-II with recombinant HDL containing egg phosphatidylcholine, unesterified cholesterol and apolipoprotein A-I, Biochim. Biophys. Acta, 1042, 227, 10.1016/0005-2760(90)90013-N
Wu, 2013, BioGPS and MyGene.info: organizing online, gene-centric information, Nucleic Acids Res., 41, D561, 10.1093/nar/gks1114
Shen, 2017, HECTD1 controls the protein level of IQGAP1 to regulate the dynamics of adhesive structures, Cell Commun. Signal, 15, 2, 10.1186/s12964-016-0156-8
Li, 2013, Ubiquitylation of phosphatidylinositol 4-phosphate 5-kinase type I gamma by HECTD1 regulates focal adhesion dynamics and cell migration, J. Cell Sci., 126, 2617, 10.1242/jcs.117044
Tanaka, 2001, Human ABCA1 contains a large amino-terminal extracellular domain homologous to an epitope of Sjogren's syndrome, Biochem. Biophys. Res. Commun., 283, 1019, 10.1006/bbrc.2001.4891
Gaus, 2001, A kinetic model to evaluate cholesterol efflux from THP-1 macrophages to apolipoprotein A-1, Biochemistry, 40, 9363, 10.1021/bi010323n
Zohn, 2007, The Hectd1 ubiquitin ligase is required for development of the head mesenchyme and neural tube closure, Dev. Biol., 306, 208, 10.1016/j.ydbio.2007.03.018
Sarkar, 2012, Hectd1 regulates intracellular localization and secretion of Hsp90 to control cellular behavior of the cranial mesenchyme, J. Cell Biol., 196, 789, 10.1083/jcb.201105101
Sarkar, 2014, Hectd1 is required for development of the junctional zone of the placenta, Dev. Biol., 392, 368, 10.1016/j.ydbio.2014.05.007
Brunham, 2010, Cholesterol in beta-cell dysfunction: the emerging connection between HDL cholesterol and type 2 diabetes, Curr. Diab. Rep., 10, 55, 10.1007/s11892-009-0090-x
XM, 2015, HDL particle size is a critical determinant of ABCA1-mediated macrophage cellular cholesterol export, Circ. Res., 116, 1133, 10.1161/CIRCRESAHA.116.305485
Rotin, 2009, Physiological functions of the HECT family of ubiquitin ligases, Nat. Rev. Mol. Cell Biol., 10, 398, 10.1038/nrm2690
Mund, 2014, Peptide and small molecule inhibitors of HECT-type ubiquitin ligases, Proc. Natl. Acad. Sci. U. S. A., 111, 16736, 10.1073/pnas.1412152111
Kathman, 2015, A small molecule that switches a ubiquitin ligase from a processive to a distributive enzymatic mechanism, J. Am. Chem. Soc., 137, 12442, 10.1021/jacs.5b06839
Bernassola, 2008, The HECT family of E3 ubiquitin ligases: multiple players in cancer development, Cancer Cell, 14, 10, 10.1016/j.ccr.2008.06.001