The Dynamical Core, Physical Parameterizations, and Basic Simulation Characteristics of the Atmospheric Component AM3 of the GFDL Global Coupled Model CM3

Journal of Climate - Tập 24 Số 13 - Trang 3484-3519 - 2011
Leo J. Donner1, Bruce Wyman1, Richard S. Hemler1, Larry W. Horowitz1, Yi Ming1, Ming Zhao2, Jean‐Christophe Golaz1, Paul Ginoux1, Shian‐Jiann Lin1, M. D. Schwarzkopf1, J. Austin2, Ghassan J. Alaka3, William Cooke4, Thomas L. Delworth1, S. M. Freidenreich1, Chris Gordon1, Stephen M. Griffies1, Isaac M. Held1, W. Hurlin1, Stephen A. Klein5, Thomas R. Knutson1, A. R. Langenhorst4, Hyun‐Chul Lee4, Yanluan Lin2, Brian I. Magi6, Sergey Malyshev6, P. C. D. Milly7, Vaishali Naïk4, Mary Jo Nath1, Robert Pincus8, Jeffrey J. Ploshay1, V. Ramaswamy1, Charles J. Seman1, Elena Shevliakova6, J. Sirutis1, W. Stern1, Ronald J. Stouffer1, R. J. Wilson1, Michael Winton1, Andrew T. Wittenberg1, Fanrong Zeng1
1NOAA/GFDL, Princeton, New Jersey
2UCAR/GFDL, Princeton, New Jersey
3Colorado State University, Fort Collins, Colorado
4High Performance Technologies, Inc./GFDL, Princeton, New Jersey
5Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California
6Princeton University/GFDL, Princeton, New Jersey
7U.S. Geological Survey, Princeton, New Jersey
8University of Colorado/ESRL, Boulder, Colorado

Tóm tắt

Abstract The Geophysical Fluid Dynamics Laboratory (GFDL) has developed a coupled general circulation model (CM3) for the atmosphere, oceans, land, and sea ice. The goal of CM3 is to address emerging issues in climate change, including aerosol–cloud interactions, chemistry–climate interactions, and coupling between the troposphere and stratosphere. The model is also designed to serve as the physical system component of earth system models and models for decadal prediction in the near-term future—for example, through improved simulations in tropical land precipitation relative to earlier-generation GFDL models. This paper describes the dynamical core, physical parameterizations, and basic simulation characteristics of the atmospheric component (AM3) of this model. Relative to GFDL AM2, AM3 includes new treatments of deep and shallow cumulus convection, cloud droplet activation by aerosols, subgrid variability of stratiform vertical velocities for droplet activation, and atmospheric chemistry driven by emissions with advective, convective, and turbulent transport. AM3 employs a cubed-sphere implementation of a finite-volume dynamical core and is coupled to LM3, a new land model with ecosystem dynamics and hydrology. Its horizontal resolution is approximately 200 km, and its vertical resolution ranges approximately from 70 m near the earth’s surface to 1 to 1.5 km near the tropopause and 3 to 4 km in much of the stratosphere. Most basic circulation features in AM3 are simulated as realistically, or more so, as in AM2. In particular, dry biases have been reduced over South America. In coupled mode, the simulation of Arctic sea ice concentration has improved. AM3 aerosol optical depths, scattering properties, and surface clear-sky downward shortwave radiation are more realistic than in AM2. The simulation of marine stratocumulus decks remains problematic, as in AM2. The most intense 0.2% of precipitation rates occur less frequently in AM3 than observed. The last two decades of the twentieth century warm in CM3 by 0.32°C relative to 1881–1920. The Climate Research Unit (CRU) and Goddard Institute for Space Studies analyses of observations show warming of 0.56° and 0.52°C, respectively, over this period. CM3 includes anthropogenic cooling by aerosol–cloud interactions, and its warming by the late twentieth century is somewhat less realistic than in CM2.1, which warmed 0.66°C but did not include aerosol–cloud interactions. The improved simulation of the direct aerosol effect (apparent in surface clear-sky downward radiation) in CM3 evidently acts in concert with its simulation of cloud–aerosol interactions to limit greenhouse gas warming.

Từ khóa


Tài liệu tham khảo

Ackerman, 2004, The impact of humidity above stratiform clouds on indirect aerosol forcing, Nature, 432, 1014, 10.1038/nature03174

Adler, 2003, The version-2 Global Precipitation Climatology Project (GPCP) monthly precipitation analysis (1979–present), J. Hydrometeor., 4, 1147, 10.1175/1525-7541(2003)004<1147:TVGPCP>2.0.CO;2

Alexander, 1999, A spectral parameterization of mean-flow forcing due to breaking gravity waves, J. Atmos. Sci., 56, 4167, 10.1175/1520-0469(1999)056<4167:ASPOMF>2.0.CO;2

Alexander, 2003, Gravity-wave forcing in the stratosphere: Observational constraints from the Upper Atmosphere Research Satellite and implications for parameterization in global models, J. Geophys. Res., 108, 4597, 10.1029/2003JD003373

Anderson, 2004, The new GFDL global atmosphere and land model AM2-LM2: Evaluation with prescribed SST simulations, J. Climate, 17, 4641, 10.1175/JCLI-3223.1

Austin, 2006, Ensemble simulations of the decline and recovery of stratospheric ozone, J. Geophys. Res., 111, D16314, 10.1029/2005JD006907

Austin, 2010, Sensitivity of polar ozone to sea surface temperatures and halogen amounts, J. Geophys. Res., 115, D18303, 10.1029/2009JD013292

Balkanski, 2007, Reevaluation of mineral aerosol radiative forcings suggests a better agreement with satellite and AERONET data, Atmos. Chem. Phys., 7, 81, 10.5194/acp-7-81-2007

Bender, 2010, Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes, Science, 327, 454, 10.1126/science.1180568

Bey, 2001, Global modeling of tropospheric chemistry with assimilated meteorology: Model description and evaluation, J. Geophys. Res., 106, 23 073, 10.1029/2001JD000807

Bodas-Salcedo, 2008, Evaluating cloud systems in the Met Office global forecast model using simulated CloudSat radar reflectivities, J. Geophys. Res., 113, D00A13, 10.1029/2007JD009620

Bower, 1994, A parameterization of warm clouds for use in atmospheric general circulation models, J. Atmos. Sci., 51, 2722, 10.1175/1520-0469(1994)051<2722:APOWCF>2.0.CO;2

Brasseur, 1998, MOZART, a global chemical transport model for ozone and related chemical tracers: 1. Model description, J. Geophys. Res., 103, 28 265, 10.1029/98JD02397

Bretherton, 2004, A new parameterization for shallow cumulus convection and its application to marine subtropical cloud-topped boundary layers. Part I: Description and 1D results, Mon. Wea. Rev., 132, 864, 10.1175/1520-0493(2004)132<0864:ANPFSC>2.0.CO;2

Brohan, 2006, Uncertainty estimates in regional and global observed temperature changes: a new dataset from 1850, J. Geophys. Res., 111, D12106, 10.1029/2005JD006548

Carslaw, 1995, An analytic expression for the composition of aqueous HNO3–H2SO4 stratospheric aerosols including gas phase removal of HNO3, Geophys. Res. Lett., 22, 1877, 10.1029/95GL01668

CERSAT-IFREMER, 2002, ERS-1, ERS-2, and NSCAT

Chepfer, 2008, Use of CALIPSO lidar observations to evaluate cloudiness simulated by a climate model, Geophys. Res. Lett., 35, L15704, 10.1029/2008GL034207

Chepfer, 2010, The GCM-oriented CALIPSO cloud product (CALIPSO-GOCCP), J. Geophys. Res., 115, D00H16, 10.1029/2009JD012251

Chin, 2002, Tropospheric aerosol optical thickness from the GOCART model and comparisons with satellite and sun photometer measurements, J. Atmos. Sci., 59, 461, 10.1175/1520-0469(2002)059<0461:TAOTFT>2.0.CO;2

Cooke, 1999, Construction of a 1° × 1° fossil fuel emission data set for carbonaceous aerosol and implementation and radiative impact in the ECHAM4 model, J. Geophys. Res., 104, 22 137, 10.1029/1999JD900187

da Silva, 1994, Algorithms and Procedures

Delworth, 2006, GFDL’s CM2 global coupled climate models. Part I: Formulation and simulation characteristics, J. Climate, 19, 643, 10.1175/JCLI3629.1

Dentener, 2006, Emissions of primary aerosol and precursor gases in the years 2000 and 1750 prescribed data-sets for AeroCom, Atmos. Chem. Phys., 6, 4321, 10.5194/acp-6-4321-2006

Donner, 1993, A cumulus parameterization including mass fluxes, vertical momentum dynamics, and mesoscale effects, J. Atmos. Sci., 50, 889, 10.1175/1520-0469(1993)050<0889:ACPIMF>2.0.CO;2

Donner, 2003, Boundary-layer control on convective available potential energy: Implications for cumulus parameterization, J. Geophys. Res., 108, 4701, 10.1029/2003JD003773

Donner, 1997, Large-scale ice clouds in the GFDL SKYHI general circulation model, J. Geophys. Res., 102, 21 745, 10.1029/97JD01488

Donner, 2001, A cumulus parameterization including mass fluxes, convective vertical velocities, and mesoscale effects: Thermodynamic and hydrological aspects in a general circulation model, J. Climate, 14, 3444, 10.1175/1520-0442(2001)014<3444:ACPIMF>2.0.CO;2

Dubovik, 2000, A flexible inversion algorithm for retrieval of aerosol optical properties from sun and sky radiance measurements, J. Geophys. Res., 105, 20 673, 10.1029/2000JD900282

Emmons, 2010, Description and evaluation of the Model for Ozone and Related Chemical Tracers, version 4 (MOZART-4), Geosci. Model Dev., 3, 43, 10.5194/gmd-3-43-2010

Freidenreich, 1999, A new multiple-band solar radiative parameterization for general circulation models, J. Geophys. Res., 104, 31 389, 10.1029/1999JD900456

Fröhlich, 2004, Solar radiative output and its variability: Evidence and mechanisms, Astron. Astrophys. Rev., 12, 273, 10.1007/s00159-004-0024-1

Fu, 1996, An accurate parameterization of the solar radiative properties of cirrus clouds for climate models, J. Climate, 9, 2058, 10.1175/1520-0442(1996)009<2058:AAPOTS>2.0.CO;2

Fu, 1993, Parameterization of the radiative properties of cirrus clouds, J. Atmos. Sci., 50, 2008, 10.1175/1520-0469(1993)050<2008:POTRPO>2.0.CO;2

Fu, 1998, An accurate parameterization of the infrared radiative properties of cirrus clouds for climate models, J. Climate, 11, 2223, 10.1175/1520-0442(1998)011<2223:AAPOTI>2.0.CO;2

Gallagher, 2002, Measurements and parameterizations of small aerosol deposition velocities to grassland, arable crops, and forest: Influence of surface roughness length on deposition, J. Geophys. Res., 107, 4154, 10.1029/2001JD000817

Ganachaud, 2003, Large-scale ocean heat and freshwater transports during the World Ocean Circulation Experiment, J. Climate, 16, 696, 10.1175/1520-0442(2003)016<0696:LSOHAF>2.0.CO;2

Gates, 1999, An overview of the results of the Atmospheric Model Inter-Comparison Project (AMIP I), Bull. Amer. Meteor. Soc., 80, 29, 10.1175/1520-0477(1999)080<0029:AOOTRO>2.0.CO;2

Ghan, 1997, Prediction of cloud droplet number in a general circulation model, J. Geophys. Res., 102, 21 777, 10.1029/97JD01810

Gibson, 1997, ERA description

Ginoux, 2001, Sources and distributions of dust aerosols simulated with the GOCART model, J. Geophys. Res., 106, 22 255, 10.1029/2000JD000053

Ginoux, 2006, Evaluation of aerosol distribution and optical depth in the Geophysical Fluid Dynamics Laboratory coupled model CM2.1 for present climate, J. Geophys. Res., 111, D22210, 10.1029/2005JD006707

Giorgetta, 2006, Climatology and forcing of the quasi-biennial oscillation in the MAECHAM5 model, J. Climate, 19, 3882, 10.1175/JCLI3830.1

Giorgi, 1985, The rainout parameterization in a photochemical model, J. Geophys. Res., 90, 7872, 10.1029/JD090iD05p07872

Gnanadesikan, 2006, GFDL’s CM2 global coupled climate models. Part II: The baseline ocean simulation, J. Climate, 19, 675, 10.1175/JCLI3630.1

Golaz, 2011, Sensitivity of the aerosol indirect effect to subgrid variability in the cloud parameterization of the GFDL atmosphere general circulation model AM3, J. Climate, 24, 3145, 10.1175/2010JCLI3945.1

Griffies, 2009, Elements of MOM4p1

Griffies, 2004, A Technical Guide to MOM4

Griffies, 2005, Formulation of an ocean model for global climate simulations, Ocean Sci., 1, 45, 10.5194/os-1-45-2005

Griffies, 2009, Coordinated Ocean-Ice Reference Experiments (COREs), Ocean Modell., 26, 1, 10.1016/j.ocemod.2008.08.007

Griffies, 2011, GFDL’s CM3 coupled climate model: Characteristics of the ocean and sea ice simulations, J. Climate, 24, 3520, 10.1175/2011JCLI3964.1

Grinnell, 1996, Vertical mass flux calculations in Hawaiian trade cumulus clouds from dual-Doppler radar, J. Atmos. Sci., 53, 1870, 10.1175/1520-0469(1996)053<1870:VMFCIH>2.0.CO;2

Guo, 2010, A dynamic probability density function treatment of cloud mass and number concentrations for low level clouds in GFDL SCM/GCM, Geosci. Model Dev., 3, 475, 10.5194/gmd-3-475-2010

Han, 1994, Near-global survey of effective droplet radii in liquid water clouds using ISCCP data, J. Climate, 7, 465, 10.1175/1520-0442(1994)007<0465:NGSOED>2.0.CO;2

Hanson, 1988, Laboratory studies of the nitric acid trihydrate: Implications for the south polar stratosphere, Geophys. Res. Lett., 15, 855, 10.1029/GL015i008p00855

Harrison, 1990, Seasonal variation of cloud radiative forcing derived from the Earth Radiation Budget Experiment, J. Geophys. Res., 95, 18 687, 10.1029/JD095iD11p18687

Haywood, 1998, Global sensitivity studies of the direct radiative forcing due to anthropogenic sulfate and black carbon aerosols, J. Geophys. Res., 103, 6043, 10.1029/97JD03426

Held, 1993, Radiative–convective equilibrium with explicit two-dimensional moist convection, J. Atmos. Sci., 50, 3909, 10.1175/1520-0469(1993)050<3909:RCEWET>2.0.CO;2

Hess, 1998, Optical properties of aerosols and clouds: The software package OPAC, Bull. Amer. Meteor. Soc., 79, 831, 10.1175/1520-0477(1998)079<0831:OPOAAC>2.0.CO;2

Hess, 2000, Episodic modeling of the chemical structure of the troposphere as revealed during the spring MLOPEX 2 intensive, J. Geophys. Res., 105, 26 809, 10.1029/2000JD900253

Heymsfield, 1990, A scheme for parameterizing ice-cloud water content in general circulation models, J. Atmos. Sci., 47, 1865, 10.1175/1520-0469(1990)047<1865:ASFPIC>2.0.CO;2

Holben, 1998, AERONET—A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1, 10.1016/S0034-4257(98)00031-5

Horowitz, 2006, Past, present, and future concentrations of tropospheric ozone and aerosols: Methodology, ozone evaluation, and sensitivity to aerosol wet removal, J. Geophys. Res., 111, D22211, 10.1029/2005JD006937

Horowitz, 2003, A global simulation of tropospheric ozone and related tracers: Description and evaluation of MOZART, version 2, J. Geophys. Res., 108, 4784, 10.1029/2002JD002853

Huffman, 1997, The Global Precipitation Climatology Project (GPCP) combined precipitation data set, Bull. Amer. Meteor. Soc., 78, 5, 10.1175/1520-0477(1997)078<0005:TGPCPG>2.0.CO;2

Huffman, 2007, The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, combined-sensor precipitation estimates at fine scales, J. Hydrometeor., 8, 38, 10.1175/JHM560.1

Hurrell, 2008, A new sea surface temperature and sea ice boundary data set for the Community Atmosphere Model, J. Climate, 21, 5145, 10.1175/2008JCLI2292.1

Kalnay, 1996, The NCEP/NCAR 40-Year Reanalysis Project, Bull. Amer. Meteor. Soc., 77, 437, 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2

King, 2003, Cloud and aerosol properties, precipitable water, and profiles of temperature and humidity, IEEE Trans. Geosci. Remote Sens., 41, 442, 10.1109/TGRS.2002.808226

Knutson, 2006, Assessment of twentieth-century regional surface trends using the GFDL CM2 coupled models, J. Climate, 19, 1624, 10.1175/JCLI3709.1

Kopp, 2005, The Total Irradiance Monitor (TIM): Science results, Sol. Phys., 230, 129, 10.1007/s11207-005-7433-9

Lamarque, 2010, Historical (1850–2000) gridded anthropogenic and biomass burning emissions of reactive gases and aerosols: Methodology and application, Atmos. Chem. Phys. Discuss., 10, 4963, 10.5194/acpd-10-4963-2010

Large, 2009, The global climatology of an interannually varying air-sea flux data set, Climate Dyn., 33, 341, 10.1007/s00382-008-0441-3

Leary, 1980, The contribution of mesoscale motions to the mass and heat fluxes of an intense tropical convective system, J. Atmos. Sci., 37, 784, 10.1175/1520-0469(1980)037<0784:TCOMMT>2.0.CO;2

Lee, 2009, Sensitivity of aerosol and cloud effects on radiation to cloud types: Comparison between deep convective clouds and warm stratiform clouds over one-day period, Atmos. Phys. Chem., 9, 2555, 10.5194/acp-9-2555-2009

Li, 2008, Distribution, transport, and deposition of mineral dust in the Southern Ocean and Antarctica: Contribution of major sources, J. Geophys. Res., 113, D10207, 10.1029/2007JD009190

Liebmann, 1996, Description of a complete (interpolated) outgoing longwave radiation dataset, Bull. Amer. Meteor. Soc., 77, 1275

Lin, 2006, Tropical intraseasonal variability in 14 IPCC AR4 climate models. Part I: Convective signals, J. Climate, 19, 2665, 10.1175/JCLI3735.1

Lin, 1997, A finite-volume integration method for computing pressure-gradient force in general vertical coordinates, Quart. J. Roy. Meteor. Soc., 123, 1749

Lin, 2004, A “vertically Lagrangian” finite-volume dynamical core for global models, Mon. Wea. Rev., 132, 2293, 10.1175/1520-0493(2004)132<2293:AVLFDC>2.0.CO;2

Lin, 1996, Multidimensional flux-form semi-Lagrangian transport schemes, Mon. Wea. Rev., 124, 2046, 10.1175/1520-0493(1996)124<2046:MFFSLT>2.0.CO;2

Lin, 1997, An explicit flux-form semi-Lagrangian shallow water model on the sphere, Quart. J. Roy. Meteor. Soc., 123, 2477, 10.1002/qj.49712354416

Lin, 2011, Parameterization of riming intensity and its impact on ice fall speed using ARM data, Mon. Wea. Rev., 139, 1036, 10.1175/2010MWR3299.1

Lock, 2000, A new boundary layer mixing scheme. Part I: Scheme description and single-column model tests, Mon. Wea. Rev., 128, 3187, 10.1175/1520-0493(2000)128<3187:ANBLMS>2.0.CO;2

Loeb, 2009, Toward optimal closure of the earth’s top-of-atmosphere radiation budget, J. Climate, 22, 748, 10.1175/2008JCLI2637.1

Louis, 1979, A parametric model of vertical eddy fluxes in the atmosphere, Bound.-Layer Meteor., 17, 187, 10.1007/BF00117978

Madronich, 1998, The role of solar radiation in atmospheric chemistry

Manabe, 1965, Simulated climatology of a general circulation model with hydrologic cycle, Mon. Wea. Rev., 93, 769, 10.1175/1520-0493(1965)093<0769:SCOAGC>2.3.CO;2

Mapes, 1993, Cloud clusters and superclusters over the oceanic warm pool, Mon. Wea. Rev., 121, 1398, 10.1175/1520-0493(1993)121<1398:CCASOT>2.0.CO;2

McFarquhar, 1999, Use of observed ice crystal sizes and shapes to calculate mean scattering properties and multi-spectral radiances: CEPEX April 4, 1993 case study, J. Geophys. Res., 104, 31 763, 10.1029/1999JD900802

Meehl, 2007, The WCRP CMIP3 multi-model dataset: A new era in climate change research, Bull. Amer. Meteor. Soc., 88, 1383, 10.1175/BAMS-88-9-1383

Milly, 2002, Global modeling of land water and energy balances. Part I: The land dynamics (LaD) model, J. Hydrometeor., 3, 283, 10.1175/1525-7541(2002)003<0283:GMOLWA>2.0.CO;2

Ming, 2004, Organic aerosol effects on fog droplet spectra, J. Geophys. Res., 109, D10206, 10.1029/2003JD004427

Ming, 2005, Direct radiative forcing of anthropogenic organic aerosols, J. Geophys. Res., 110, D20208, 10.1029/2004JD005573

Ming, 2006, A robust parameterization of cloud droplet activation, J. Atmos. Sci., 63, 1348, 10.1175/JAS3686.1

Monahan, 1986, A model of marine aerosol generation via whitecaps and wave disruption, 10.1007/978-94-009-4668-2_16

O’Dowd, 2008, A combined organic-inorganic sea-spray source function, Geophys. Res. Lett., 35, L01801

Paluch, 1979, The entrainment mechanism in Colorado cumuli, J. Atmos. Sci., 36, 2467, 10.1175/1520-0469(1979)036<2467:TEMICC>2.0.CO;2

Perovich, 2002, Seasonal evolution of the albedo of multi-year arctic sea ice, J. Geophys. Res., 107, 8044, 10.1029/2000JC000438

Pincus, 2003, A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous cloud fields, J. Geophys. Res., 108, 4376, 10.1029/2002JD003322

Pincus, 2005, Overlap assumptions for assumed probability distribution function cloud schemes in large-scale models, J. Geophys. Res., 110, D15S09, 10.1029/2004JD005100

Pincus, 2006, Using stochastically generated subcolumns to represent cloud structure in a large-scale model, Mon. Wea. Rev., 134, 3644, 10.1175/MWR3257.1

Pincus, 2008, Evaluating the present-day simulation of clouds, precipitation, and radiation in climate models, J. Geophys. Res., 113, D14209, 10.1029/2007JD009334

Putman, 2007, Finite-volume transport on various cubed-sphere grid, J. Comput. Phys., 227, 55, 10.1016/j.jcp.2007.07.022

Randel, 1999, A stratospheric ozone trends data set for global modeling studies, Geophys. Res. Lett., 26, 3089, 10.1029/1999GL900615

Randel, 2007, A stratospheric ozone profile data set for 1979–2005: Variability, trends, and comparisons with column ozone data, J. Geophys. Res., 112, D06313, 10.1029/2006JD007339

Rayner, 2003, Global analyses of sea surface temperature, sea ice, and night marine air temperature since the late nineteenth century, J. Geophys. Res., 108, 4407, 10.1029/2002JD002670

Reichler, 2008, How well do coupled models simulate today’s climate?, Bull. Amer. Meteor. Soc., 89, 303, 10.1175/BAMS-89-3-303

Rotstayn, 1997, A physically based scheme for the treatment of stratiform clouds and precipitation in large-scale models. I: Description and evaluation of microphysical processes, Quart. J. Roy. Meteor. Soc., 123, 1227

Rotstayn, 2000, On the “tuning” of autoconversion parameterizations in climate models, J. Geophys. Res., 105, 15 495, 10.1029/2000JD900129

Rotstayn, 2000, A scheme for calculation of the liquid fraction in mixed-phase clouds in large-scale models, Mon. Wea. Rev., 128, 1070, 10.1175/1520-0493(2000)128<1070:ASFCOT>2.0.CO;2

Sadourny, 1972, Conservative finite-difference approximations of the primitive equations on quasi-uniform spherical grids, Mon. Wea. Rev., 100, 136, 10.1175/1520-0493(1972)100<0136:CFAOTP>2.3.CO;2

Sander, 2006, Chemical kinetics and photochemical data for use in atmospheric studies

Schwarzkopf, 1999, Radiative effects of CH4, N2O, halocarbons and the foreign-broadened H2O continuum: A GCM experiment, J. Geophys. Res., 104, 9467, 10.1029/1999JD900003

Shevliakova, 2009, Carbon cycling under 300 years of land use change: Importance of the secondary vegetation sink, Global Biogeochem. Cycles, 23, GB2022, 10.1029/2007GB003176

Siebesma, 2003, A large-eddy simulation intercomparison study of shallow cumulus convection, J. Atmos. Sci., 60, 1201, 10.1175/1520-0469(2003)60<1201:ALESIS>2.0.CO;2

Simmons, 1981, An energy and angular-momentum conserving vertical finite-difference scheme and hybrid vertical coordinates, Mon. Wea. Rev., 109, 758, 10.1175/1520-0493(1981)109<0758:AEAAMC>2.0.CO;2

Slingo, 1989, A GCM parameterization for the shortwave radiative properties of water clouds, J. Atmos. Sci., 46, 1419, 10.1175/1520-0469(1989)046<1419:AGPFTS>2.0.CO;2

Stenchikov, 2006, Arctic Oscillation response to volcanic eruptions in the IPCC AR4 climate models, J. Geophys. Res., 111, D07107, 10.1029/2005JD006286

Stern, 1988, The impact of an orographic gravity wave drag parameterization on extended-range predictions with a GCM

Stolarski, 2006, Search for evidence of trend slow-down in the long-term TOMS/SBUV total ozone data record: The importance of instrument drift uncertainty, Atmos. Chem. Phys., 12, 4057, 10.5194/acp-6-4057-2006

Tang, 1994, Water activities, densities, and refractive indices of aqueous sulfates an sodium nitrate droplets of atmospheric importance, J. Geophys. Res., 99, 18 801, 10.1029/94JD01345

Tang, 1997, Thermodynamic and optical properties of sea-salt aerosols, J. Geophys. Res., 102, 23 269, 10.1029/97JD01806

Taylor, 2001, Summarizing multiple aspects of model performance in a single diagram, J. Geophys. Res., 106, 7183, 10.1029/2000JD900719

Thompson, 2006, Interpretation of recent Southern Hemisphere climate change, Science, 296, 895, 10.1126/science.1069270

Tie, 2005, Assessment of the global impact of aerosols on tropospheric oxidants, J. Geophys. Res., 110, D03204, 10.1029/2004JD005359

Tiedtke, 1993, Representation of clouds in large-scale models, Mon. Wea. Rev., 121, 3030, 10.1175/1520-0493(1993)121<3040:ROCILS>2.0.CO;2

Trenberth, 2001, Estimates of meridional atmosphere and ocean heat transports, J. Climate, 14, 3433, 10.1175/1520-0442(2001)014<3433:EOMAAO>2.0.CO;2

Uppala, 2005, The ERA-40 Re-Analysis, Quart. J. Roy. Meteor. Soc., 131, 2961, 10.1256/qj.04.176

Vitart, 1997, Simulation of interannual variability of tropical storm frequency in an ensemble of GCM integrations, Mon. Wea. Rev., 129, 745

Wesely, 1989, Parameterization of surface resistances to gaseous dry deposition in regional-scale numerical models, Atmos. Environ., 23, 1293, 10.1016/0004-6981(89)90153-4

Wheeler, 1999, Convectively coupled equatorial waves: Analysis of clouds and temperature in the wavenumber–frequency domain, J. Atmos. Sci., 56, 374, 10.1175/1520-0469(1999)056<0374:CCEWAO>2.0.CO;2

Wielicki, 1996, Clouds and the Earth’s Radiant Energy System (CERES): An earth observing system experiment, Bull. Amer. Meteor. Soc., 77, 853, 10.1175/1520-0477(1996)077<0853:CATERE>2.0.CO;2

Wilcox, 2007, The frequency of extreme rain events in satellite rain-rate estimates and an atmospheric general circulation model, J. Climate, 20, 53, 10.1175/JCLI3987.1

Winton, 2000, A reformulated three-layer sea ice model, J. Atmos. Oceanic Technol., 17, 525, 10.1175/1520-0426(2000)017<0525:ARTLSI>2.0.CO;2

Woodruff, 1987, A Comprehensive Ocean–Atmosphere Dataset, Bull. Amer. Meteor. Soc., 68, 1239, 10.1175/1520-0477(1987)068<1239:ACOADS>2.0.CO;2

Zhang, 2002, Convective quasi-equilibrium in mid-latitude continental environment and its effect on convective parameterization, J. Geophys. Res., 107, 4220, 10.1029/2001JD001005

Zhang, 2009, Effects of entrainment on convective available potential energy and closure assumptions in convection parameterization, J. Geophys. Res., 114, D07109, 10.1029/2008JD010976

Zhang, 2007, Toward understanding the double Intertropical Convergence Zone pathology in coupled ocean–atmosphere general circulation models, J. Geophys. Res., 112, D12102, 10.1029/2006JD007878

Zhao, 2005, Life cycle of numerically simulated shallow cumulus clouds. Part I: Transport, J. Atmos. Sci., 62, 1269, 10.1175/JAS3414.1

Zhao, 2005, Life cycle of numerically simulated shallow cumulus clouds. Part II: Mixing dynamics, J. Atmos. Sci., 62, 1291, 10.1175/JAS3415.1

Zhao, 2009, Simulations of global hurricane climatology, interannual variability, and response to global warming using a 50-km resolution GCM, J. Climate, 22, 6653, 10.1175/2009JCLI3049.1