The Dyck and the Preiss separation uniformly

Annals of Pure and Applied Logic - Tập 169 - Trang 1082-1116 - 2018
Vassilios Gregoriades1
1Mathematics Department “Guiseppe Peano”, University of Turin, Via Carlo Alberto, 10, 10123 Turin, Italy

Tài liệu tham khảo

Gregoriades, 2012, Turning Borel sets into clopen sets effectively, Fund. Math., 219, 119, 10.4064/fm219-2-4 Grünbaum, 2003, Convex Polytopes, vol. 221 Holický, 1974, The convex generation of convex Borel sets in locally convex spaces, Mathematika, 21, 207, 10.1112/S0025579300008597 Kechris, 1995, Classical Descriptive Set Theory, vol. 156 Kihara, 2015, Decomposing Borel functions using the Shore–Slaman Join Theorem, Fund. Math., 230, 1, 10.4064/fm230-1-1 Klee, 1951, Convex sets in linear spaces, Duke Math. J., 18, 443 Klee, 1953, Convex sets in linear spaces. III, Duke Math. J., 20, 105 Larman, 1971, The convex Borel sets in R3 are convexly generated, J. Lond. Math. Soc. (2), 4, 5, 10.1112/jlms/s2-4.1.5 Le Roux, 2015, Finite choice, convex choice and finding roots, Log. Methods Comput. Sci., 11, 4, 10.2168/LMCS-11(4:6)2015 Moschovakis, 2009, Descriptive Set Theory, vol. 155 Motto Ros, 2013, On the structure of finite level and ω-decomposable Borel functions, J. Symbolic Logic, 78, 1257, 10.2178/jsl.7804150 Pauly, 2014, Non-deterministic computation and the Jayne–Rogers theorem, vol. 143, 87 Preiss, 1973, The convex generation of convex Borel sets in Banach spaces, Mathematika, 20, 1, 10.1112/S0025579300003569 Spector, 1955, Recursive well-orderings, J. Symbolic Logic, 20, 151, 10.2307/2266902 Ziegler, 2004, Computable operators on regular sets, MLQ Math. Log. Q., 50, 392, 10.1002/malq.200310107