The Double Layer Potential Operator on Hardy Spaces
Tóm tắt
Many studies have been done for one-dimensional Cauchy integral operator. We consider n-dimensional Cauchy integral operator for hypersurface, or we say, the double layer potential operator, and obtain the boundedness from Hp(Rn) to hp(Rn) (local Hardy space). For the proof we introduce Clifford valued Hardy spaces.
Tài liệu tham khảo
J. Álvarez, Hp and weak Hp continuity of Calderón-Zygmund type operators, in: Fourier analysis (Orono, ME, 1992), Lecture Notes in Pure and Appl. Math., vol. 157, Dekker (New York, 1994), pp. 17–34.
J. Álvarez and M. Milman, Hp Continuity properties of Calderón-Zygmund-type operators, J. Math. Anal. Appl., 118 (1986), 63–79.
M. Christ, Lectures on Singular Integral Operators, CBMS Regional Conference Ser. in Math., vol. 77, Amer. Math. Soc. (Providence, 1990).
G. David, Wavelets and Singular Integrals on Curves and Surfaces, Lecture Notes in Math., vol. 1465, Springer (Berlin, 1991).
R. R. Coifman and G. Weiss, Extensions of Hardy spaces and their use in analysis, Bull. Amer. Math. Soc., 83 (1977), 569–645.
G. David and J.-L. Journé, A boundedness criterion for generalized Caldero’n-Zygmund operators, Ann. of Math. (2), 120 (1984), 371–397.
G. David, J.-L. Journé and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoam., 1 (1985), 1–56.
C. Fefferman and E. M. Stein, Hardy spaces of several variables, Acta Math., 129 (1972), 137–193.
J. H. Gilbert and M. A. M. Murray, Hp-theory on Euclidean space and the Dirac operator, Rev. Mat. Iberoam., 4 (1988), 253–289.
J.H. Gilbert and M. A. M. Murray, Clifford Algebras and Dirac Operators in Harmonic Analysis, Cambridge Studies in Adv. Math., vol. 26, Cambridge Univ. Press (Cambridge, 1991).
D. Goldberg, A local version of real Hardy spaces, Duke Math. J., 46 (1979), 27–42.
Y. Komori, Calderón-Zygmund operators on Hp(Rn), Sci. Math. Japon., 53 (2001), 65–73.
Y. Komori, The Cauchy integral operator on Hardy space, Hokkaido Math. J., 37 (2008), 389–398.
S. Z. Lu, Four Lectures on Real HpSpaces, World Scientific (Singapore, 1995).
Y. Meyer and R. Coifman, Wavelets: Calderón-Zygmund and Multilinear Operators, Cambridge Studies in Adv. Math., vol. 48, Cambridge Univ. Press (Cambridge, 1997).
M. A. M. Murray, The Cauchy integral, Calderón commutators, and conjugation of singular integrals in Rn, Trans. Amer. Math. Soc., 289 (1985), 497–518.
A. Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press (Orlando, 1986).
Z. Wu, Clifford algebras, Hardy spaces, and compensated compactness, in: Clifford Algebras in Analysis and Related Topics (J. Ryan, ed.), Studies in Adv. Math., CRC Press (Boca Raton, 1996), pp. 217–238.