The Control of Mesenchymal Stem Cell Differentiation Using Dynamically Tunable Surface Microgrooves

Advanced healthcare materials - Tập 3 Số 10 - Trang 1608-1619 - 2014
Tao Gong1, Kun Zhao1, Guang Yang1, Jinrong Li1, Hongmei Chen1, Yuping Chen1, Shaobing Zhou1
1Key Laboratory of Advanced Technologies of Materials (Ministry of Education), School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China

Tóm tắt

Many studies have demonstrated the potential to modulate stem cell differentiation by using static material substrate surfaces. However, cells actually grow in a dynamically diverse microenvironment in vivo. The regulated signals to the differentiation provided by these materials should not be passive or static but be active and dynamic. To mimic the endogenous cell culture microenvironment, a novel system is designed to realize the dynamic change of the surface geometries as well as a resultant mechanical force using a thermally activated four‐stage shape memory polymer. The parallel microgroove surface patterns are fabricated via thermal embossing lithography on the polymer substrate surface. The dynamic microgroove surfaces accompanying with the mechanical force can effectively and significantly regulate the shape and the cytoskeletal arrangement of rBMSC compared with the static patterned and non‐patterned surfaces. Cellular and molecular analyses reveal that the spatiotemporally programmed regulation of cell shape is more viable to coax lineage‐specific differentiation of stem cell in contrast to the general reports with the static surfaces. Therefore, this study provides a facile strategy in designing and manufacturing an artificial substrate with a mimic natural cellular environment to precisely direct the cell differentiation.

Từ khóa


Tài liệu tham khảo

10.1016/j.tibtech.2012.04.003

10.1038/ncomms2271

10.1038/nature08602

10.1126/science.1171643

10.1016/j.cell.2006.06.044

10.1038/nmat2013

10.1126/science.276.5317.1425

10.1038/ncb2074

10.1126/science.1191035

10.1038/nmeth.1487

10.1126/science.1175862

10.1038/onc.2008.348

10.1038/nrm2957

10.1038/nature08908

10.1073/pnas.0505939102

10.1073/pnas.0604182103

10.1038/nmeth0910-695

10.1038/nature08073

10.1038/nbt.1687

10.1146/annurev-bioeng-061008-124915

10.1152/physrev.00026.2002

10.1038/nature06386

10.1038/nphys680

10.1038/nrm1890

10.1038/nature05824

10.1038/nmat2563

10.1242/jcs.00359

10.1002/adma.201100821

10.1002/adma.201102181

10.1126/science.1066102

10.1002/adma.200904447

10.1126/science.1145593

10.1088/0957-4484/20/23/235702

10.1073/pnas.98.3.842

10.1002/pen.21832

10.1002/pen.11517

10.1038/nature08863

10.1016/j.biomaterials.2012.05.010

10.1016/S0032-3861(99)00636-9

10.1089/ten.tea.2008.0111

10.1634/stemcells.2008-0061

10.1016/j.biomaterials.2005.10.003

10.1016/j.actbio.2010.02.038

10.1038/nrm2593

10.1002/adhm.201200030

10.1073/pnas.0608586103

10.1002/adfm.201000478

10.1073/pnas.0609267103

10.1038/nature07765

10.1016/j.cell.2008.04.025

10.1016/j.stem.2009.06.016

10.1073/pnas.0908686106

10.1073/pnas.0702576104

10.1038/nature10316

10.1073/pnas.1201499109

10.1002/smll.200801476

10.1002/smll.201002298

10.1016/j.cell.2008.02.007

10.1016/S0142-9612(03)00207-2

10.1021/am100692n

10.1016/j.actbio.2011.12.006

10.1039/c2jm32007j