Phương Trình Tính Liên Tục, Đo Đạc Hermitian và Các Gói Elliptic

The Journal of Geometric Analysis - Tập 30 - Trang 762-776 - 2019
Morgan Sherman1, Ben Weinkove2
1Department of Mathematics, California Polytechnic State University, San Luis Obispo, USA
2Department of Mathematics, Northwestern University, Evanston, USA

Tóm tắt

Chúng tôi mở rộng phương trình tính liên tục của La Nave–Tian tới các đo đạc Hermitian và xác lập khoảng thời gian tồn tại tối đa của nó. Phương trình này có mối liên hệ chặt chẽ với dòng Chern–Ricci, và chúng tôi minh họa điều này trong trường hợp các gói elliptic trên một đường cong có độ gen tối thiểu là hai.

Từ khóa

#phương trình tính liên tục #đo đạc Hermitian #gói elliptic #dòng Chern–Ricci #độ gen

Tài liệu tham khảo

Aubin, T.: Équations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. (2) 102(1), 63–95 (1978) Brînzănescu, V.: Néron-Severi group for nonalgebraic elliptic surfaces. II. Non-Kählerian case. Manuscr. Math. 84(3–4), 415–420 (1994) Cao, H.D.: Deformation of Kähler metrics to Kähler-Einstein metrics on compact Kähler manifolds. Invent. Math. 81(2), 359–372 (1985) Cherrier, P.: Équations de Monge-Ampère sur les variétés Hermitiennes compactes. Bull. Sci. Math. (2) 111, 343–385 (1987) Evans, L.C.: Classical solutions of fully nonlinear, convex, second order elliptic equations. Commun. Pure Appl. Math. 25, 333–363 (1982) Fong, F.T.-H., Zhang, Z.: The collapsing rate of the Kähler-Ricci flow with regular infinite time singularity. J. Reine Angew. Math. 703, 95–113 (2015) Fu, X., Guo, B., Song, J.: Geometric estimates for complex Monge-Ampère equations. Preprint. arXiv:1706.01527 Gauduchon, P.: Le théorème de l’excentricité nulle. C. R. Acad. Sci. Paris Sér. A-B 285(5), A387–A390 (1977) Gill, M.: Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Commun. Anal. Geom. 19(2), 277–303 (2011) Gill, M.: Collapsing of products along the Kähler-Ricci flow. Trans. Am. Math. Soc. 366(7), 3907–3924 (2014) Gross, M., Tosatti, V., Zhang, Y.: Collapsing of abelian fibred Calabi-Yau manifolds. Duke Math. J. 162(3), 517–551 (2013) Krylov, N.V.: Boundedly nonhomogeneous elliptic and parabolic equations. Izvestia Akad. Nauk. SSSR 46, 487–523 (1982). English translation in. Math. USSR Izv. 20(3), 459–492 (1983) La Nave, G., Tian, G.: A continuity method to construct canonical metrics. Math. Ann. 365(3–4), 911–921 (2016) La Nave, G., Tian, G., Zhang, Z.: Bounding diameter of singular Kähler metric. Am. J. Math. 139(6), 1693–1731 (2017) Li, Y.: Bounding diameter of conical Kähler metric. J. Geom. Anal. 28(2), 950–982 (2018) Phong, D.H., Sturm, J.: The Dirichlet problem for degenerate complex Monge-Ampère equations. Commun. Anal. Geom. 18(1), 145–170 (2010) Rubinstein, Y.A.: Some discretizations of geometric evolution equations and the Ricci iteration on the space of Kähler metrics. Adv. Math. 218(5), 1526–1565 (2008) Sherman, M., Weinkove, B.: Local Calabi and curvature estimates for the Chern-Ricci flow. New York J. Math. 19, 565–582 (2013) Song, J., Tian, G.: The Kähler-Ricci flow on surfaces of positive Kodaira dimension. Invent. Math. 170(3), 609–653 (2007) Song, J., Tian, G.: The Kähler-Ricci flow through singularities. Invent. Math. 207(2), 519–595 (2017) Song, J., Weinkove, B.: An introduction to the Kähler-Ricci flow. In: An Introduction to the Kähler-Ricci Flow. Lecture Notes in Mathematics, vol. 2086, pp. 89–188. Springer, Cham (2013) Tian, G., Zhang, Z.: On the Kähler-Ricci flow on projective manifolds of general type. Chin. Ann. Math. Ser. B 27(2), 179–192 (2006) Tian, G., Zhang, Z.: Relative volume comparison of Ricci flow and its applications. Preprint. arXiv:1802.09506 Tosatti, V.: Adiabatic limits of Ricci-flat Kähler metrics. J. Differ. Geom. 84(2), 427–453 (2010) Tosatti, V., Wang, Y., Weinkove, B., Yang, X.: \(C^{2,\alpha }\) estimates for nonlinear elliptic equations in complex and almost complex geometry. Calc. Var. Partial Differ. Equ. 54(1), 431–453 (2015) Tosatti, V., Weinkove, B.: Estimates for the complex Monge-Ampère equation on Hermitian and balanced manifolds. Asian J. Math. 14(1), 19–40 (2010) Tosatti, V., Weinkove, B.: The complex Monge-Ampère equation on compact Hermitian manifolds. J. Am. Math. Soc. 23(4), 1187–1195 (2010) Tosatti, V., Weinkove, B.: On the evolution of a Hermitian metric by its Chern-Ricci form. J. Differ. Geom. 99(1), 125–163 (2015) Tosatti, V., Weinkove, B.: The Chern-Ricci flow on complex surfaces. Compos. Math. 149(12), 2101–2138 (2013) Tosatti, V., Weinkove, B., Yang, X.: Collapsing of the Chern-Ricci flow on elliptic surfaces. Math. Ann. 362(3–4), 1223–1271 (2015) Trudinger, N.S.: Fully nonlinear, uniformly elliptic equations under natural structure conditions. Trans. Am. Math. Soc. 278(2), 751–769 (1983) Tsuji, H.: Existence and degeneration of Kähler-Einstein metrics on minimal algebraic varieties of general type. Math. Ann. 281(1), 123–133 (1988) Tsuji, H.: Degenerate Monge-Ampère equation in algebraic geometry. In: Miniconference on Analysis and Applications (Brisbane, 1993). Proceedings of the Centre for Mathematics and its Applications, Australian National University, vol. 33, pp. 209–224. Australian National University, Canberra (1994) Wall, C.T.C.: Geometric structures on compact complex analytic surfaces. Topology 25(2), 119–153 (1986) Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Commun. Pure Appl. Math. 31, 339–411 (1978) Zhang, Y., Zhang, Z.: The continuity method on minimal elliptic Kähler surfaces. Preprint. arXiv:1610.07806 Zhang, Y., Zhang, Z.: The continuity method on Fano fibrations. Preprint. arXiv:1612.01348