The Compressible to Incompressible Limit of One Dimensional Euler Equations: The Non Smooth Case

Rinaldo M. Colombo1, Graziano Guerra2, Veronika Schleper3
1INDAM Unit, University of Brescia, Brescia, Italy
2Department of Mathematics and Applications, University of Milano-Bicocca, Milan, Italy
3Institute for Applied Analysis and Numerical Simulations, University of Stuttgart, Stuttgart, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Borsche R., Colombo R.M., Garavello M.: Mixed systems: ODEs—balance laws. J. Differ. Equ. 252(3), 2311–2338 (2012)

Borsche, R., Colombo, R.M., Garavello, M.: On the interactions between a solid body and a compressible inviscid fluid. Interfaces Free Bound. 15(3), 381–403 (2013)

Bressan, A.: Hyperbolic systems of conservation laws. Oxford Lecture Series in Mathematics and its Applications, Vol. 20. Oxford University Press, Oxford, 2000. (The one-dimensional Cauchy problem)

Colombo, R.M., Schleper, V.: Two-phase flows: non-smooth well posedness and the compressible to incompressible limit. Nonlinear Anal. Real World Appl. 13(5), 2195–2213 (2012)

Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 325, 3rd edn. Springer, Berlin, 2010

Ebin, D.G.: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. (2), 105(1), 141–200 (1977)

Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, 2009

Hoff D.: The zero-Mach limit of compressible flows. Commun. Math. Phys. 192(3), 543–554 (1998)

Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)

Klainerman, S., Majda, A.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35(5), 629–651 (1982)

Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158(1), 61–90 (2001)

Schochet, S.: The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Commun. Math. Phys. 104(1), 49–75 (1986)

Schochet, S.: The mathematical theory of low Mach number flows. M2AN Math. Model. Numer. Anal. 39(3), 441–458 (2005)

Secchi, P.: On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2(2), 107–125 (2000)

Xu, J., Yong, W.-A.: A note on incompressible limit for compressible Euler equations. Math. Methods Appl. Sci. 34(7), 831–838 (2011)