The Compressible to Incompressible Limit of One Dimensional Euler Equations: The Non Smooth Case
Tóm tắt
Từ khóa
Tài liệu tham khảo
Borsche R., Colombo R.M., Garavello M.: Mixed systems: ODEs—balance laws. J. Differ. Equ. 252(3), 2311–2338 (2012)
Borsche, R., Colombo, R.M., Garavello, M.: On the interactions between a solid body and a compressible inviscid fluid. Interfaces Free Bound. 15(3), 381–403 (2013)
Bressan, A.: Hyperbolic systems of conservation laws. Oxford Lecture Series in Mathematics and its Applications, Vol. 20. Oxford University Press, Oxford, 2000. (The one-dimensional Cauchy problem)
Colombo, R.M., Schleper, V.: Two-phase flows: non-smooth well posedness and the compressible to incompressible limit. Nonlinear Anal. Real World Appl. 13(5), 2195–2213 (2012)
Dafermos, C.M.: Hyperbolic conservation laws in continuum physics. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], Vol. 325, 3rd edn. Springer, Berlin, 2010
Ebin, D.G.: The motion of slightly compressible fluids viewed as a motion with strong constraining force. Ann. Math. (2), 105(1), 141–200 (1977)
Feireisl, E., Novotný, A.: Singular limits in thermodynamics of viscous fluids. Advances in Mathematical Fluid Mechanics. Birkhäuser, Basel, 2009
Klainerman S., Majda A.: Singular limits of quasilinear hyperbolic systems with large parameters and the incompressible limit of compressible fluids. Commun. Pure Appl. Math. 34(4), 481–524 (1981)
Klainerman, S., Majda, A.: Compressible and incompressible fluids. Commun. Pure Appl. Math. 35(5), 629–651 (1982)
Métivier, G., Schochet, S.: The incompressible limit of the non-isentropic Euler equations. Arch. Ration. Mech. Anal. 158(1), 61–90 (2001)
Schochet, S.: The compressible Euler equations in a bounded domain: existence of solutions and the incompressible limit. Commun. Math. Phys. 104(1), 49–75 (1986)
Schochet, S.: The mathematical theory of low Mach number flows. M2AN Math. Model. Numer. Anal. 39(3), 441–458 (2005)
Secchi, P.: On the singular incompressible limit of inviscid compressible fluids. J. Math. Fluid Mech. 2(2), 107–125 (2000)