The Chang’E-1 orbiter plays a distinctive role in China’s first successful selenodetic lunar mission

Science China Physics, Mechanics & Astronomy - Tập 54 - Trang 2130-2144 - 2011
JinSong Ping1,2, XiaoLi Su2, Qian Huang2, JianGuo Yan3
1National Astronomical Observatory, Chinese Academy of Sciences, Beijing, China
2Shanghai Astronomical Observatory, Chinese Academy of Sciences, Shanghai, China
3State Key Laboratory of Information Engineering in Surveying, Mapping and Remote Sensing, Wuhan University, Wuhan, China

Tóm tắt

The first Chinese lunar orbiter Chang’E-1 is a successful mission with many fruitful results obtained in various disciplines. The scientific data acquired by the Chang’E-1 payloads can benefit studies of the lunar origin and evolution, as well as other relevant research areas, after careful validation of the data. Among the new results, the Chang’E-1 selenodetic products are continually uncovering characteristics of the lunar surface, undersurface and inner structure. Successful lunar orbiters such as the Clementine, Lunar Prospector, KAGUYA/SELENE, Chang’E-1, Lunar Reconnaissance Orbiter and GRAIL have been revealing, with increasing clarity, global selenodetic characteristics with state-of-the-art fine resolution and high precision. In particular, the Chang’E-1 plays an important distinctive role in selenodetic exploration through enhancing lunar topography and gravity models. The gravity model has been successfully improved with a factor of two after applying the Chang’E-1 long-wavelength tracking data. Using the new models, some medium-scale lunar surface characteristics such as basins and volcanoes have been identified. Furthermore, the old mascon basins of Bouguer, gravity anomaly and craters have been discovered with the Chang’E-1 selenodetic data.

Từ khóa


Tài liệu tham khảo

Ouyang Z Y, Li C L, Zou Y L, et al. China’s first lunar orbiting project: Instruments, data and science results. In: New Advances in Lunar Exploration. Proceedings of International Symposium on Lunar Science. Ouyang Z Y, Ip W H, Tang Z H, eds. Macao: Macau University of Science and Technology, 2010. 3–12

Zheng Y C, Ouyang Z Y, Li C L, et al. China’s lunar exploration program: Present and future. Planet Space Sci, 2008, 56(7): 881–886

Ouyang Z Y, Li C L, Zou Y L, et al. Primary scientific results of Chang’E-1 lunar mission. Sci China Earth Sci, 2010, 53(11): 1565–1581

Ouyang Z Y, Jiang J S, Li C L, et al. Preliminary scientific results of Chang’E-1 lunar orbiter: Based on payloads detection data in the first phase (in Chinese). Chin J Space Sci, 2008, 28(5): 9–17

Yan J G, Ping J S, Li F, et al. Chang’E-1 precision orbit determination and lunar gravity field solution. Adv Space Res, 2010, 46: 50–57

Li J L, Guo L, Qian Z H, et al. The application of the instantaneous states reduction to the orbital monitoring of pivotal arcs of the Chang’E-1 satellite. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1833–1841

Li J L, Guo L, Qian Z H, et al. Determination of the controlled landing trajectory of Chang’E-1 satellite and the coordinate analysis of the landing pointon the Moon. Chin Sci Bull, 2010, 55: 1240–1245

Ping J S, Su X L, Huang Q, et al. Chang’E-1 selenodetic progress. In: New Advances in Lunar Exploration. Proceedings of International Symposium on Lunar Science. Ouyang Z Y, Ip W H, Tang Z H, eds. Macao: Macau University of Science and Technology, 2010. 50–60

Ping J S, Qian Z H, Fung L W. Editorial. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1813–1814

Ping J S. Preface: Joint researches are benefitting the Chang’E-1 comprehensive lunar scientific studies which probe ever deeper. Sci China Phys Mech Astron: 2010, 53(12): 2135

Jiang J S. Editorial. Sci China Ser D Earth Sci, 2009, 39(8): 1028

Ping J S, Su X L, Huang Q. New selenenodetic results in Chang’E-1 mission. In: 42nd Lunar and Planetary Science Conference, 2011. http://www.lpi.usra.edu/meetings/lpsc2011/pdf/1036.pdf

Smith D E, Zuber M T, Neumann G A, et al. Topography of the Moon from the Clementine Lidar. J Geophys Res, 1997, 102: 1591–1611

Zuber M T, Smith, D E, Lemoine F G, et al. The shape and internal structure of the Moon from the Clementine mission. Science, 1994, 266: 1839–1843

Ping J S, Heki K, Matsumoto K, et al. A degree 180 spherical Harmonic model for the lunar topography. Adv Space Res, 2003, 31(11): 2377–2382

Konopliv A S, Asmar W, Carranza E, et al. Recent gravity models as a result of the lunar prospect mission. Icarus, 2001, 150: 1–18

Namiki N, Takahiro I, Matsumoto K, et al. Farside gravity field of the Moon from four-way Doppler measurement of SELENE(Kaguya). Science, 2009, 323: 900–905

Araki H, Tazawa S, Noda H, et al. Lunar global shape and polar topography derived from Kaguya-LALT laser altimetry. Science, 2009, 323: 897–900

Matsumoto K S, Goossens Y, Ishiharay, et al. An improved lunar gravity field model from SELENE and historical tracking data: Revealing the farside gravity features. J Geophys Res, 2010, 115: E06007

Mazarico E, Lemoine F G, Neumann G A, et al. Preparations for Lunar Reconnaissance Orbiter gravity and altimetry missions. In: American Geophysical Union, Fall Meeting, 2008, abstract #P31B-1401

Zuber M T, Smith D E, Alkalai L, et al. Outstanding questions on the internal structure and thermal evolution of the moon and future prospects from the grail mission. In: 39th Lunar and Planetary Science Conference (Lunar and Planetary Science XXXIX), held March 10–14, 2008 in League City, Texas. LPI Contribution No. 1391. 1074

Li C L, Liu J J, Ren X, et al. The global image of the moon by the Chang’E-1: Data processing and lunar cartography. Sci China Earth Sci, 2010, 53(8): 1091–1102

Li C L, Ren X, Liu J J, et al. Laser altimetry data of Chang’E-1 and the global lunar DEM model. Sci China Earth Sci, 2010, 53: 1582–1593

Ping J S, Huang Q, Yan J, et al. Lunar topographic model CLTM-s01 from ChangE-1 laser altimeter. Sci China Ser G-Phys Mech Astron, 2009, 52(7): 1105–1114

Yan J G, Li F, Ping J S, et al. Lunar gravity field mode CEGM-01 based on tracking data of Chang’E-1 (in Chinese). Chin J Geophys, 2010, 53(12): 2843–2851

Yan J G, Ping J S, Koji M, et al. Optimization on lunar gravity field model using Chang’E-1 orbital tracking data (in Chinese). Sci Sin Phys Mech Astron, 2011, 41: 870–878

Ping J S, Huang Q, Su X L, et al. Chang’E-1 orbiter discovers a lunar nearside volcano: YUTU mountain. Chin Sci Bull, 2009, 54(23): 4534–4536

Huang Q, Ping J S, Su X L, et al. New features of the Moon revealed and identified by CLTM-s01. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1815–1823

Liang Q, Chen C, Huang Q, et al. Bouguer gravity anomaly of the Moon from CE-1 topography data: Implications for basin impact evolution. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1867–1875

Zhao B C, Yan J F, Wen D S, et al. Design and on-orbit measurement of Chang’E-1 satellite CCD stereo camera (in Chinese). Spacecr Eng, 2009, 18(1): 30–36

Song Z X, Zhao B C, Gao W, et al. Focal plane design of Chang’E-1 satellite CCD stereo camera and laboratory radiation calibration (in Chinese). Acta Optica Sin, 2010, 30(12): 3508–3514

Kawano N, Liu Q H, Ping J S, et al. Results obtained by geodetic instruments of SELENE (KAGUYA). Sci China Phys Mech Astron, 2010, 53(12): 2188–2193

Xiao Z Y, Zeng Z X, Xiao L, et al. Origin of pit chains in the floor of lunar Copernican craters. Sci China Phys Mech Astron, 2010, 53(12): 2145–2159

Wang Z Z, Li Y, Zhang X H, et al. Calibration and brightness temperature algorithm of CE-1 Lunar Microwave Sounder (CELMS). Sci China Ser D-Earth Sci, 2010, 53(9): 1392–1406

Wang Z Z, Li Y, Jiang J S, et al. Lunar surface dielectric constant, regolith thickness and 3He abundance distributions retrieved from microwave bright-ness temperatures of CE-1 Lunar Microwave Sounder. Sci China Ser D-Earth Sci, 2010, 53(9): 1365–1378

Li D H, Liu H G, Zhang W G, et al. Lunar 3He estimations and related parameters analyses. Sci China Ser D-Earth Sci, 2010, 53(8): 1103–1114

Fa W Z, Jin Y Q. Global inventory of Helium-3 in lunar regolith estimated by multi-channel microwave radiometer on Chang-E 1 lunar satellite. Chin Sci Bull, 2010, 55(35): 4005–4009

Meng Z G, Chen S B, OSEI Jnr E W, et al. Research on water ice content in Cabeus Crater using the data from microwave radiometer onboard Chang’e-1 satellite. Sci China Phys Mech Astron, 2010, 53(12): 2172–2178

Lunar Mining of Helium-3. Fusion Technology Institute of the University of Wisconsin-Madison. http://fti.neep.wisc.edu/Research/he3_pubs.html. 2007-10-19

Slyuta E N, Abdrakhimov A M, Galimov E M. The estimation of helium-3 probable reserves in lunar regolith. In: Lunar and Planetary Science XXXVIII, 2007. http://www.lpi.usra.edu/meetings/lpsc2007/pdf/2175.pdf

Hedman Eric R. A fascinating hour with Gerald Kulcinski. The Space Review. http://www.thespacereview.com/article/536/1. 2006-01-16

Melosh H J. Impact Cratering: A Geologic Process. New York: Oxford University Press, 1989

Wang X D, Bian W, Wang J S, et al. Acceleration of scattered solar wind protons at the polar terminator of the Moon: Results from Chang’E-1/SWIDs. Geophys Res Lett, 2010, 37: L07203

Wang X D, Zong Q G, Wang J S, et al. Detection of m/q=2 pickup ions in the plasma environment of the Moon: The trace of exospheric H+2. Geophys Res Lett, 2010, 38: L14204

Nishino M N, Wang X D, Fujimoto M. Anomalous deformation of the Earth’s bow shock in the lunar wake: Joint measurement by Chang’E-1 and SELENE. Planet Space Sci, 2011, 59(5–6): 378–386

Zhu M H, Chang J, Ma T, et al. Postassium distribution on lunar surface from Chang’E-1 Gamma ray spectrometer. In: New Advances in Lunar Exploration. Proceedings of International Symposium on Lunar Science. Ouyang Z Y, Ip W H, Tang Z H, eds. Macao: Macau University of Science and Technology, 2010. 88–105

Zhu M H. Methods for Numerical Analysis and Its Application to The Lunar Gamma Ray Spectroscopic Data. Doctoral Degree Dissertation. Macau: Macau University of Science and Technology, 2010

Yang J, Ge L Q, Xiong S Q, et al. Data processing of CE-1 Gamma-ray Spectrometer. In: New Advances in Lunar Exploration. Proceedings of International Symposium on Lunar Science. Ouyang Z Y, Ip W H, Tang Z H, eds. Macao: Macau University of Science and Technology, 2010. 220–226

Wu Y Z. Maping Tio2 with Chang’E-1 IIM data. In: New advances in lunar exploration. Proceedings of international symposium on lunar science. Ouyang Z Y, Ip W H, Tang Z H, eds. Macao: Macau University of Science and Technology, 2010. 167–174

Wu Y Z, Xu X S, Xie Z D, et al. Absolute calibration of the Chang’E-1 IIM camera and its preliminary application. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1842–1848

Wu Y Z, Zhang X, Yan B K, et al. Global absorption center map of the mafic minerals on the Moon as viewed by CE-1 IIM data. Sci China Phys Mech Astron, 2010, 53(12): 2160–2171

Hu S, Lin Y T. Modified calibration method of the chang’E-1 IIM images (in Chinese). Sci Sin Phys Mech Astron, 2011, 41: 879–888

Ling Z C, Zhang J, Liu J Z, et al. Preliminary results of FeO mapping using Imaging Interferometer data from Chang’E-1. Chin Sci Bull, 2011, 56(4): 376–379

Zhao B C, Yan J F, Xue B, et al. Calibration of Chang’E-1 satellite interference imaging spectrometer. Acta Photonica Sin, 2010, 39(5): 769–775

Liu F J, Qiao L, Liu Z, et al. Estimation of lunar titanium content: Based on absorption features of Chang’E-1 interference imaging spectrometer (IIM). Sci China Phys Mech Astron, 2010, 53(12): 2136–2144

Williams J G, Boggs D H. Lunar core and mantle. What does LLR see? In: Proceedings of the 16th International Workshop on Laser Ranging, 2009. 101–120. http://cddis.gsfc.nasa.gov/lw16

Weber R C, Lin P Y, Garnero E J, et al. Seismic detection of the lunar core. Science, 2011, 331(6015): 309–3126

Fok H S, Shum C K, Yi Y C, et al. Accuracy assessment of lunar topography models. Earth Planets Space, 2011, 63: 15–23

Cai Z C, Liang Y Y, Li J, et al. Digital elevation model of the Moon from the Chang’E-1 Laser altimeter. Progr Geophys, 2010, 25(4): 1153–1160

Chen C, Chen B, Ping J S, et al. The interpretation of gravity anomaly on lunar Apennines using CE-1 topography data. Sci China Ser G-Phys Mech Astron, 2009, 52(12): 1824–1832