The Cayley transform of the generator of a polynomially stable $$C_0$$-semigroup

Journal of Evolution Equations - Tập 21 Số 4 - Trang 4575-4597 - 2021
Masashi Wakaiki1
1Graduate School of System Informatics, Kobe University, Nada, Kobe, Hyogo, 657-8501, Japan

Tóm tắt

AbstractIn this paper, we study the decay rate of the Cayley transform of the generator of a polynomially stable $$C_0$$ C 0 -semigroup. To estimate the decay rate of the Cayley transform, we develop an integral condition on resolvents for polynomial stability. Using this integral condition, we relate polynomial stability to Lyapunov equations. We also study robustness of polynomial stability for a certain class of structured perturbations.

Từ khóa


Tài liệu tham khảo

Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Basel: Birkhäuser (2001)

Bátkai, A., Engel, K.J., Prüss, J., Schnaubelt, R.: Polynomial stability of operator semigroups. Math. Nachr. 279, 1425–1440 (2006)

Batty, C.J.K., Chill, R., Tomilov, Y.: Fine scales of decay of operator semigroups. J. Eur. Math. Soc 18, 853–929 (2016)

Batty, C.J.K., Duyckaerts, T.: Non-uniform stability for bounded semi-groups on Banach spaces. J. Evol. Equ. 8, 765–780 (2008)

Batty, C.J.K., Gomilko, A., Tomilov, Y.: A Besov algebra calculus for generators of operator semigroups and related norm-estimates. Math. Ann. 379, 23–93 (2021)

Borichev, A., Tomilov, Y.: Optimal polynomial decay of functions and operator semigroups. Math. Ann. 347, 455–478 (2010)

Cohen, G., Lin, M.: Remarks on rates of convergence of powers of contractions. J. Math. Anal. Appl. 436, 1196–1213 (2016)

Curtain, R.F., Zwart, H.J.: An Introduction to Infinite-Dimensional Linear Systems Theory. New York: Springer (1995)

Eisner, T.: Stability of Operators and Operator Semigroups. Basel: Birkhäuser (2010)

Engel, K.J., Nagel, R.: One-Parameter Semigroups for Linear Evolution Equations. New York: Springer (2000)

Gautschi, W.: Some elementary inequalities relating to the gamma and incomplete gamma function. J. Math. Phys. 38, 77–81 (1959)

Gomilko, A.: Cayley transform of the generator of a uniformly bounded $$C_0$$-semigroup of operators. Ukrainian Math. J. 56, 1212–1226 (2004)

Gomilko, A.: Inverses of semigroup generators: a survey and remarks. In: Études opératorielles, Banach Center Publ, pp. 107–142 (2017)

Gomilko, A., Zwart, H.: The Cayley transform of the generator of a bounded $$C_0$$-semigroup. Semigroup Forum 74, 140–148 (2007)

Gomilko, A., Zwart, H., Besseling, N.: Growth of semigroups in discrete and continuous time. Studia Math. 206, 273–292 (2011)

Gomilko, A.M.: Conditions on the generator of a uniformly bounded $$C_0$$-semigroup. Funct. Anal. Appl. 33, 294–296 (1999)

Guo, B.Z., Zwart, H.: On the relation between stability of continuous-and discrete-time evolution equations via the Cayley transform. Integr. equ. oper. theory 54, 349–383 (2006)

Haase, M.: The Functional Calculus for Sectorial Operators. Basel: Birkhäuser (2006)

Haase, M.: Lectures on Functional Calculus. 21st International Internet Seminar, Kiel Univ (2018). Retrieved May 27, 2021, from https://www.math.uni-kiel.de/isem21/en/course/phase1/isem21-lectures-on-functional-calculus

Liu, Z., Rao, B.: Characterization of polynomial decay rate for the solution of linear evolution equation. Angew. Math. Phys. 56, 630–644 (2005)

Nagy, B.S., Foiaş, C.: Harmonic Analysis of Operators on Hilbelt Space. North Holland Publishing Co. (1970)

Ng, A.C.S., Seifert, D.: Optimal rates of decay in the Katznelson-Tzafriri theorem for operators on Hilbert spaces. J. Funct. Anal. 279, Art. no. 108799 (2020)

Paunonen, L.: Perturbation of strongly and polynomially stable Riesz-spectral operators. Systems Control Lett. 60, 234–248 (2011)

Paunonen, L.: Robustness of strongly and polynomially stable semigroups. J. Funct. Anal. 263, 2555–2583 (2012)

Paunonen, L.: Robustness of polynomial stability with respect to unbounded perturbations. Systems Control Lett. 62, 331–337 (2013)

Piskarev, S., Zwart, H.: Crank-Nicolson scheme for abstract linear systems. Numer. Funct. Anal. Optim. 28, 717–736 (2007)

Rastogi, S., Srivastava, S.: Strong and polynomial stability for delay semigroups. J. Evol. Equ. 21, 441–472 (2021)

Rozendaal, J., Seifert, D., Stahn, R.: Optimal rates of decay for operator semigroups on Hilbert spaces. Adv. Math. 346, 359–388 (2019)

Seifert, D.: A quantified Tauberian theorem for sequences. Stud. Math. 227, 183–192 (2015)

Seifert, D.: Rates of decay in the classical Katznelson-Tzafriri theorem. J. Anal. Math. 130, 329–354 (2016)

Shi, D.H., Feng, D.X.: Characteristic conditions of the generation of $$C_0$$ semigroups in a Hilbert space. J. Math. Anal. Appl. 247, 356–376 (2000)

Staffans, O.J.: Well-Posed Linear Systems. Cambridge, UK: Cambridge Univ. Press (2005)

Tomilov, Y.: A resolvent approach to stability of operator semigroups. J. Operator Theory 46, 63–98 (2001)

Weidmann, J.: Linear operators in Hilbert spaces. New York: Springer (1980)