The Cauchy-Goursat problem for wave equations with nonlinear dissipative term

Pleiades Publishing Ltd - Tập 94 - Trang 913-929 - 2013
S. S. Kharibegashvili1, O. M. Jokhadze1
1Tbilisi State University, Tbilisi, Georgia

Tóm tắt

The Cauchy-Goursat problem for wave equations with nonlinear dissipative term is studied. The existence, uniqueness, and blow-up of global solutions of this problem are considered. The local solvability of this problem is also discussed.

Tài liệu tham khảo

J.-L. Lions, Quelques méthodes de résolution des problèmes aux limites nonlinéaires (Dunod, Paris, 1969; Mir, Moscow, 1972). J.-L. Lions and W. A. Strauss, “Some non linear evolution equations,” Bull. Soc. Math. France 93, 43–96 (1965). A. V. Bitsadze, Some Classes of Partial Differential Equations (Nauka, Moscow, 1981) [in Russian]. F. John, “Blow-up of solutions of nonlinear wave equation in three space dimensions,” Manuscripta Math. 28(1–3), 235–268 (1979). T. Kato, “Blow-up of solutions of some nonlinear hyperbolic equations,” Comm. Pure Appl. Math. 33(4), 501–505 (1980). T. C. Sideris, “Nonexistence of global solutions to semilinear wave equations in high dimensions,” J. Differential Equations 52(3), 378–406 (1984). V. Georgiev, H. Lindblad, and C. D. Sogge, “Weighted Strichartz estimates and global existence for semilinear wave equations,” Amer. J.Math. 119(6), 1291–1319 (1997). L. Hörmander, Lectures on Nonlinear Hyperbolic Differential Equations, in Math. Appl. (Berlin) (Springer-Verlag, Berlin, 1997), Vol. 26. S. I. Pohozaev and L. Véron, “Blow-up results for nonlinear hyperbolic inequaties,” Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 29(2), 393–420 (2001). É. Mitidieri and S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities,” in TrudyMat. Inst. Steklov (Nauka, Moscow, 2001), Vol. 234, pp. 3–383 [Proc. Steklov Inst.Math. 234, 1–362 (2001)]. G. Todorova and E. Vitillaro, “Blow-up for nonlinear dissipative wave equations in ℝn,” J. Math. Anal. Appl. 303(1), 242–257 (2005). L. Liu and M. Wang, “Global existence and blow-up of solutions for some hyperbolic systems with damping and source terms,” Nonlinear Anal. 64(1), 69–91 (2006). J. Zhu, “Blow-up of solutions of a semilinear hyperbolic equation and a parabolic equation with general forcing term and boundary condition,” Nonlinear Anal. 67(1), 33–38 (2007). S. Kharibegashvili, “On the solvability of one multidimensional version of the first Darboux problem for some nonlinear wave equations,” Nonlinear Anal. 68(4), 912–924 (2008). S. S. Kharibegashvili, “On the solvability of the characteristic Cauchy problem for some nonlinear wave equations in the future light cone,” Differ. Uravn. 44(1), 129–139 (2008) [Differ. Equations 44 (1), 135–146 (2008)]. O. Jokhadze, “On existence and nonexistence of global solutions of Cauchy-Goursat problem for nonlinear wave equations,” J. Math. Anal. Appl. 340(2), 1033–1045 (2008). G. K. Berikelashvili, O. M. Jokhadze, B. G. Midodashvili, and S. S. Kharibegashvili, “On the existence and nonexistence of global solutions of the first Darboux problem for nonlinear wave equations,” Differ. Uravn. 44(3), 359–372 (2008) [Differ. Equations 44 (3), 374–389 (2008)]. O. M. Jokhadze and S. S. Kharibegashvili, “On the first Darboux problem for second-order nonlinear hyperbolic equations,” Mat. Zametki 84(5), 693–712 (2008) [Math. Notes 84 (5), 646–663 (2008)]. E. Goursat, Course of Mathematical Analysis, Vol. 3, Part 1: Infinitely Near Integrals. Partial Differential Equations (Gostekhizdat, Moscow-Leningrad, 1933) [Russian transl.]. E. I. Moiseev, “Approximation of the classical solution of the Darboux problem by smooth solutions,” Differ. Uravn. 20(1), 73–87 (1984). E. I. Moiseev, Equations of Mixed Type with Spectral Parameter (Izd. Moskov. Univ., Moscow, 1988) [in Russian]. A.M. Nakhushev, Equations of Mathematical Biology (Vysshaya Shkola, Moscow, 1995) [in Russian]. S. Kharibegashvili, “Goursat and Darboux type problems for linear hyperbolic partial differential equations and systems,” Mem. Differential Equations Math. Phys. 4, 1–127 (1995). D. Henry Geometric Theory of Semilinear Parabolic Equations (Springer-Verlag, Heidelberg, 1981; Mir, Moscow, 1985). O. A. Ladyzhenskaya, Boundary-Value Problems of Mathematical Physics (Nauka, Moscow, 1973) [in Russian]. V. A. Trenogin, Functional Analysis (Nauka, Moscow, 1980) [in Russian].