The CD44-HA axis and inflammation in atherosclerosis: A temporal perspective
Tài liệu tham khảo
Benjamin, 2017, Heart disease and stroke statistics—2017 update: a report from the American Heart Association, Circulation, 10.1161/CIR.0000000000000485
Kaperonis, 2006, Inflammation and atherosclerosis, Eur. J. Vasc. Endovasc. Surg., 31, 386, 10.1016/j.ejvs.2005.11.001
Galkina, 2009, Immune and inflammatory mechanisms of atherosclerosis, Annu. Rev. Immunol., 27, 165, 10.1146/annurev.immunol.021908.132620
Yash Prashar, 2017, Emerging role of various signaling pathways in the pathogenesis and therapeutics of atherosclerosis, Vasc. Med., 10–11, 1
Johnson, 2009, CD44 and its role in inflammation and inflammatory diseases, Inflamm. Allergy Drug Targets., 8, 208, 10.2174/187152809788680994
Puré, 2001, A crucial role for CD44 in inflammation, Trends Mol. Med., 7, 213, 10.1016/S1471-4914(01)01963-3
Cichy, 2004, Cytokines regulate the affinity of soluble CD44 for hyaluronan, FEBS Lett., 556, 69, 10.1016/S0014-5793(03)01370-X
Goodison, 1999, CD44 cell adhesion molecules, Mol. Pathol., 52, 189, 10.1136/mp.52.4.189
Monslow, 2015, Hyaluronan - a functional and structural sweet spot in the tissue microenvironment, Front. Immunol., 6, 10.3389/fimmu.2015.00231
Wight, 2017, Provisional matrix: a role for versican and hyaluronan, Matrix Biol., 60–61, 38, 10.1016/j.matbio.2016.12.001
Hascall, 2014, The dynamic metabolism of hyaluronan regulates the cytosolic concentration of UDP-GlcNAc, Matrix Biol., 35, 14, 10.1016/j.matbio.2014.01.014
Vigetti, 2014, Hyaluronan: biosynthesis and signaling, Biochim. Biophys. Acta Gen. Subj., 1840, 2452, 10.1016/j.bbagen.2014.02.001
Viola, 2008, Molecular control of the hyaluronan biosynthesis, Connect. Tissue Res., 49, 111, 10.1080/03008200802148405
Siiskonen, 2015, Hyaluronan synthase 1: a mysterious enzyme with unexpected functions, Front. Immunol., 6, 10.3389/fimmu.2015.00043
Kiene, 2016, Deletion of hyaluronan synthase 3 inhibits neointimal hyperplasia in mice, Arterioscler. Thromb. Vasc. Biol., 36, e9, 10.1161/ATVBAHA.115.306607
Albright, 2014, Genetic network identifies novel pathways contributing to atherosclerosis susceptibility in the innominate artery, BMC Med. Genomics, 7, 10.1186/1755-8794-7-51
Zhao, 2008, CD44 expressed on both bone marrow-derived and non-bone marrow-derived cells promotes atherogenesis in ApoE-deficient mice, Arterioscler. Thromb. Vasc. Biol., 28, 1283, 10.1161/ATVBAHA.108.165753
Cuff, 2001, The adhesion receptor CD44 promotes atherosclerosis by mediating inflammatory cell recruitment and vascular cell activation, J. Clin. Invest., 108, 1031, 10.1172/JCI200112455
Hägg, 2007, Augmented levels of CD44 in macrophages from atherosclerotic subjects: a possible IL-6-CD44 feedback loop?, Atherosclerosis, 190, 291, 10.1016/j.atherosclerosis.2006.03.020
Zhao, 2007, CD44 regulates vascular gene expression in a proatherogenic environment, Arterioscler. Thromb. Vasc. Biol., 27, 886, 10.1161/01.ATV.0000259362.10882.c5
Dattilo, 1998, Hypercholesterolemia alters the gene expression of novel components of the extracellular matrix in experimental vein grafts, Ann. Vasc. Surg., 12, 168, 10.1007/s100169900136
Passerini, 2004, Coexisting proinflammatory and antioxidative endothelial transcription profiles in a disturbed flow region of the adult porcine aorta, Proc. Natl. Acad. Sci. U. S. A., 101, 2482, 10.1073/pnas.0305938101
Sjöberg, 2009, CD44-deficiency on hematopoietic cells limits T-cell number but does not protect against atherogenesis in LDL receptor-deficient mice, Atherosclerosis, 206, 369, 10.1016/j.atherosclerosis.2009.03.002
Getz, 2017, Animal Models of Atherosclerosis, 205
Lee, 2017, Mouse models of atherosclerosis: a historical perspective and recent advances, Lipids Health Dis., 16, 10.1186/s12944-016-0402-5
Vigetti, 2008, Vascular pathology and the role of hyaluronan, Sci. World J., 8, 1116, 10.1100/tsw.2008.145
Papakonstantinou, 1998, The differential distribution of hyaluronic acid in the layers of human atheromatic aortas is associated with vascular smooth muscle cell proliferation and migration, Atherosclerosis, 138, 79, 10.1016/S0021-9150(98)00006-9
Lévesque, 1994, Localization and solubilization of hyaluronan and of the hyaluronan-binding protein hyaluronectin in human normal and arteriosclerotic arterial walls, Atherosclerosis, 105, 51, 10.1016/0021-9150(94)90007-8
Bot, 2010, Hyaluronic acid metabolism is increased in unstable plaques, Eur. J. Clin. Investig., 40, 818, 10.1111/j.1365-2362.2010.02326.x
Kolodgie, 2004, The accumulation of specific types of proteoglycans in eroded plaques: a role in coronary thrombosis in the absence of rupture, Curr. Opin. Lipidol., 15, 575, 10.1097/00041433-200410000-00012
Kolodgie, 2002, Differential accumulation of proteoglycans and hyaluronan in culprit lesions: insights into plaque erosion, Arterioscler. Thromb. Vasc. Biol., 22, 1642, 10.1161/01.ATV.0000034021.92658.4C
Krupinski, 2007, 361
Chai, 2005, Overexpression of hyaluronan in the tunica media promotes the development of atherosclerosis, Circ. Res., 96, 583, 10.1161/01.RES.0000158963.37132.8b
Kucur, 2009, Plasma hyaluronidase activity as an indicator of atherosclerosis in patients with coronary artery disease, Bratislava, Med. J., 110, 21
Krettek, 2009, CD44 - a new cardiovascular drug target or merely an innocent bystander?, Cardiovasc. Hematol. Disord. Drug Targets, 9, 293, 10.2174/1871529X10909040293
V., 2016, Extracellular matrix in atherosclerosis: hyaluronan and proteoglycan insights, Curr. Med. Chem., 23, 2958, 10.2174/0929867323666160607104602
Moretto, 2015, Regulation of hyaluronan synthesis in vascular diseases and diabetes, J. Diabetes Res., 2015, 10.1155/2015/167283
Sadowitz, 2012, The role of hyaluronic acid in atherosclerosis and intimal hyperplasia, J. Surg. Res., 173, 10.1016/j.jss.2011.09.025
Wight, 2008, Arterial remodeling in vascular disease: a key role for hyaluronan and versican, Front. Biosci., 13, 4933, 10.2741/3052
Karangelis, 2012, Glycosaminoglycans as key molecules in atherosclerosis: the role of versican and hyaluronan, Curr. Med. Chem., 17, 4018, 10.2174/092986710793205354
Riessen, 1996, Distribution of hyaluronan during extracellular matrix remodeling in human restenotic arteries and balloon-injured rat carotid arteries, Circulation, 93, 1141, 10.1161/01.CIR.93.6.1141
Bot, 2008, Hyaluronic acid: targeting immune modulatory components of the extracellular matrix in atherosclerosis, Curr. Med. Chem., 15, 786, 10.2174/092986708783955554
Slevin, 2007, Hyaluronan-mediated angiogenesis in vascular disease: uncovering RHAMM and CD44 receptor signaling pathways, Matrix Biol., 26, 58, 10.1016/j.matbio.2006.08.261
Sakr, 2008, Hyaluronan accumulation is elevated in cultures of low density lipoprotein receptor-deficient cells and is altered by manipulation of cell cholesterol content, J. Biol. Chem., 283, 36195, 10.1074/jbc.M807772200
Vendrov, 2010, NADPH oxidases regulate CD44 and hyaluronic acid expression in thrombin-treated vascular smooth muscle cells and in atherosclerosis, J. Biol. Chem., 285, 26545, 10.1074/jbc.M110.143917
Vendrov, 2006, Thrombin and NAD(P)H oxidase-mediated regulation of CD44 and BMP4-Id pathway in VSMC, restenosis, and atherosclerosis, Circ. Res., 98, 1254, 10.1161/01.RES.0000221214.37803.79
Wang, 2011, Hyaluronan matrices in pathobiological processes, FEBS J., 278, 1412, 10.1111/j.1742-4658.2011.08069.x
Karousou, 2017, Roles and targeting of the HAS/hyaluronan/CD44 molecular system in cancer, Matrix Biol., 59, 3, 10.1016/j.matbio.2016.10.001
Hascall, 2011, Regulatory roles of hyaluronan in health and disease, FEBS J., 278, 1411, 10.1111/j.1742-4658.2011.08068.x
Evanko, 2012, Hyaluronan and versican in the control of human T-lymphocyte adhesion and migration, Matrix Biol., 31, 90, 10.1016/j.matbio.2011.10.004
Hascall, 2004, Intracellular hyaluronan: a new frontier for inflammation?, Biochim. Biophys. Acta Gen. Subj., 1673, 3, 10.1016/j.bbagen.2004.02.013
Evanko, 1999, Formation of hyaluronan-and versican-rich pericellular matrix is required for proliferation and migration of vascular smooth muscle cells, Arterioscler. Thromb. Vasc. Biol., 19, 1004, 10.1161/01.ATV.19.4.1004
Day, 2005, Hyaluronan cross-linking: a protective mechanism in inflammation?, Trends Immunol., 26, 637, 10.1016/j.it.2005.09.009
Misra, 2015, Interactions between hyaluronan and its receptors (CD44, RHAMM) regulate the activities of inflammation and cancer, Front. Immunol., 6, 10.3389/fimmu.2015.00201
Jiang, 2011, Hyaluronan as an immune regulator in human diseases, Physiol. Rev., 91, 221, 10.1152/physrev.00052.2009
Theocharis, 2017, Proteoglycans remodeling in cancer: underlying molecular mechanisms, Matrix Biol.
Vigetti, 2008, Hyaluronan-CD44-ERK1/2 regulate human aortic smooth muscle cell motility during aging, J. Biol. Chem., 283, 4448, 10.1074/jbc.M709051200
Toole, 2002, Hyaluronan-cell interactions in cancer and vascular disease, J. Biol. Chem., 277, 4593, 10.1074/jbc.R100039200
Misra, 2011, Hyaluronan-CD44 interactions as potential targets for cancer therapy, FEBS J., 278, 1429, 10.1111/j.1742-4658.2011.08071.x
Vigetti, 2009, The effects of 4-methylumbelliferone on hyaluronan synthesis, MMP2 activity, proliferation, and motility of human aortic smooth muscle cells, Glycobiology, 19, 537, 10.1093/glycob/cwp022
Vigetti, 2008, Aortic smooth muscle cells migration and the role of metalloproteinases and hyaluronan, Connect. Tissue Res., 49, 189, 10.1080/03008200802143141
Bollyky, 2012, The role of hyaluronan and the extracellular matrix in islet inflammation and immune regulation, Curr. Diab. Rep., 12, 471, 10.1007/s11892-012-0297-0
Nagy, 2015, 4-Methylumbelliferone treatment and hyaluronan inhibition as a therapeutic strategy in inflammation, autoimmunity, and cancer, Front. Immunol., 6, 10.3389/fimmu.2015.00123
Wilkinson, 2006, Overexpression of hyaluronan synthases alters vascular smooth muscle cell phenotype and promotes monocyte adhesion, J. Cell. Physiol., 206, 378, 10.1002/jcp.20468
Lemire, 2002, Overexpression of the V3 variant of versican alters arterial smooth muscle cell adhesion, migration, and proliferation in vitro, J. Cell. Physiol., 190, 38, 10.1002/jcp.10043
Karousou, 2014, Collagen VI and hyaluronan: the common role in breast cancer, Biomed. Res. Int., 2014, 10.1155/2014/606458
Vigetti, 2014, Epigenetics in extracellular matrix remodeling and hyaluronan metabolism, FEBS J., 281, 4980, 10.1111/febs.12938
Vigetti, 2010, Proinflammatory cytokines induce hyaluronan synthesis and monocyte adhesion in human endothelial cells through hyaluronan synthase 2 (HAS2) and the nuclear factor-kappaB (NF-kappaB) pathway, J. Biol. Chem., 285, 24639, 10.1074/jbc.M110.134536
Liu, 2014, Oxidized low-density lipoprotein increases the proliferation and migration of human coronary artery smooth muscle cells through the upregulation of osteopontin, Int. J. Mol. Med., 33, 1341, 10.3892/ijmm.2014.1681
Chang, 2014, Reprint of: a rapid increase in macrophage-derived versican and hyaluronan in infectious lung disease, Matrix Biol., 35, 162, 10.1016/j.matbio.2014.04.003
Li, 2000, Antisense to LOX-1 inhibits oxidized LDL-mediated upregulation of monocyte chemoattractant protein-1 and monocyte adhesion to human coronary artery endothelial cells, Circulation, 101, 2889, 10.1161/01.CIR.101.25.2889
Li, 2003, LOX-1 mediates oxidized low-density lipoprotein-induced expression of matrix metalloproteinases in human coronary artery endothelial cells, Circulation, 107, 612, 10.1161/01.CIR.0000047276.52039.FB
Magalhaes, 2016, LDL-cholesterol increases the transcytosis of molecules through endothelial monolayers, PLoS One, 11, 10.1371/journal.pone.0163988
Vink, 2000, Oxidized lipoproteins degrade the endothelia4 surface layer: implications for platelet-endothelial cell adhesion, Circulation, 101, 1500, 10.1161/01.CIR.101.13.1500
Kolářová, 2014, Modulation of endothelial glycocalyx structure under inflammatory conditions, Mediat. Inflamm., 2014, 10.1155/2014/694312
Nagy, 2010, Inhibition of hyaluronan synthesis accelerates murine atherosclerosis: novel insights into the role of hyaluronan synthesis, Circulation, 122, 2313, 10.1161/CIRCULATIONAHA.110.972653
Mambetsariev, 2010, Hyaluronic acid binding protein 2 is a novel regulator of vascular integrity, Arterioscler. Thromb. Vasc. Biol., 30, 483, 10.1161/ATVBAHA.109.200451
Singleton, 2010, High molecular weight hyaluronan is a novel inhibitor of pulmonary vascular leakiness, Am. J. Physiol. Lung Cell. Mol. Physiol., 299, L639, 10.1152/ajplung.00405.2009
Maroski, 2011, Shear stress increases endothelial hyaluronan synthase 2 and hyaluronan synthesis especially in regard to an atheroprotective flow profile, Exp. Physiol., 96, 977, 10.1113/expphysiol.2010.056051
Yu, 2015, Nuclear factor-κB activation as a pathological mechanism of lipid metabolism and atherosclerosis, Adv. Clin. Chem., 70, 1, 10.1016/bs.acc.2015.03.004
Oeckinghaus, 2009, The NF-κB family of transcription factors and its regulation, Cold Spring Harb. Perspect. Biol., 1, 10.1101/cshperspect.a000034
Gareus, 2008, Endothelial cell-specific NF-κB inhibition protects mice from atherosclerosis, Cell Metab., 8, 372, 10.1016/j.cmet.2008.08.016
Lockette, 1986, The loss of endothelium-dependent vascular relaxation in hypertension, Hypertension, 8, II61, 10.1161/01.HYP.8.6_Pt_2.II61
Anderson, 1995, Systemic nature of endothelial dysfunction in atherosclerosis, Am. J. Cardiol., 75, 10.1016/0002-9149(95)80017-M
Napoli, 2006, Nitric oxide and atherosclerosis: an update, Nitric Oxide Biol. Chem., 15, 265, 10.1016/j.niox.2006.03.011
Singleton, 2004, CD44 interaction with ankyrin and IP3 receptor in lipid rafts promotes hyaluronan-mediated Ca2+ signaling leading to nitric oxide production and endothelial cell adhesion and proliferation, Exp. Cell Res., 295, 102, 10.1016/j.yexcr.2003.12.025
Virmani, 2002, Vulnerable plaque: the pathology of unstable coronary lesions, J. Interv. Cardiol., 15, 439, 10.1111/j.1540-8183.2002.tb01087.x
Smith, 1995, Decreased atherosclerosis in mice deficient in both macrophage colony-stimulating factor (op) and apolipoprotein E, Proc. Natl. Acad. Sci. U. S. A., 92, 8264, 10.1073/pnas.92.18.8264
Mantovani, 2013, Tumor-associated macrophages as a paradigm of macrophage plasticity, diversity, and polarization lessons and open questions, Arterioscler. Thromb. Vasc. Biol., 33, 1478, 10.1161/ATVBAHA.113.300168
Khallou-Laschet, 2010, Macrophage plasticity in experimental atherosclerosis, PLoS ONE, 5, 10.1371/journal.pone.0008852
Moore, 2013, Macrophages in atherosclerosis: a dynamic balance, Nat. Rev. Immunol., 13, 709, 10.1038/nri3520
Hodge-Dufour, 1997, Induction of IL-12 and chemokines by hyaluronan requires adhesion-dependent priming of resident but not elicited macrophages, J. Immunol., 159, 2492, 10.4049/jimmunol.159.5.2492
Cybulsky, 2016, Macrophages and dendritic cells: partners in atherogenesis, Circ. Res., 118, 637, 10.1161/CIRCRESAHA.115.306542
Marques, 2016, Iron gene expression profile in atherogenic Mox macrophages, Biochim. Biophys. Acta Mol. Basis Dis., 1862, 1137, 10.1016/j.bbadis.2016.03.004
de Gaetano, 2016, M1- and M2-type macrophage responses are predictive of adverse outcomes in human atherosclerosis, Front. Immunol., 7, 10.3389/fimmu.2016.00275
Stöger, 2012, Distribution of macrophage polarization markers in human atherosclerosis, Atherosclerosis, 225, 461, 10.1016/j.atherosclerosis.2012.09.013
Hoeksema, 2012, Molecular pathways regulating macrophage polarization: implications for atherosclerosis, Curr Atheroscler Rep, 14, 254, 10.1007/s11883-012-0240-5
Chinetti-Gbaguidi, 2011, Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARγ and LXRα pathways, Circ. Res., 108, 985, 10.1161/CIRCRESAHA.110.233775
Wang, 2014, Molecular mechanisms that influence the macrophage M1-M2 polarization balance, Front. Immunol., 5, 10.3389/fimmu.2014.00614
Park, 2012, Myeloid-specific IkappaB kinase beta deficiency decreases atherosclerosis in low-density lipoprotein receptor-deficient mice, Arter. Thromb. Vasc. Biol., 32, 2869, 10.1161/ATVBAHA.112.254573
Goossens, 2011, Myeloid IκBα deficiency promotes atherogenesis by enhancing leukocyte recruitment to the plaques, PLoS One, 6, 10.1371/journal.pone.0022327
Detmers, 2000, Deficiency in inducible nitric oxide synthase results in reduced atherosclerosis in apolipoprotein E-deficient mice, J. Immunol., 165, 3430, 10.4049/jimmunol.165.6.3430
Huang, 2014, Induction of inducible nitric oxide synthase (iNOS) expression by oxLDL inhibits macrophage derived foam cell migration, Atherosclerosis, 235, 213, 10.1016/j.atherosclerosis.2014.04.020
Janani, 2015, PPAR gamma gene – a review, Diabetes Metab. Syndr. Clin. Res. Rev., 9, 46, 10.1016/j.dsx.2014.09.015
Bouhlel, 2007, PPARγ activation primes human monocytes into alternative M2 macrophages with anti-inflammatory properties, Cell Metab., 6, 137, 10.1016/j.cmet.2007.06.010
Chinetti, 2001, PPAR-α and PPAR-γ activators induce cholesterol removal from human macrophage foam cells through stimulation of the ABCA1 pathway, Nat. Med., 7, 53, 10.1038/83348
Moore, 2001, The role of PPAR-gamma in macrophage differentiation and cholesterol uptake, Nat. Med., 7, 41, 10.1038/83328
Li, 2004, Differential inhibition of macrophage foam-cell formation and atherosclerosis in mice by PPARalpha, beta/delta, and gamma, J. Clin. Invest., 114, 1564, 10.1172/JCI18730
Mahamuni, 2012, Therapeutic approaches to drug targets in hyperlipidemia, Biomedicine, 2, 137, 10.1016/j.biomed.2012.08.002
Jiang, 1998, PPAR-γ agonists inhibit production of monocyte inflammatory cytokines, Nature, 391, 82, 10.1038/34184
Law, 1996, Troglitazone inhibits vascular smooth muscle cell growth and intimal hyperplasia, J. Clin. Invest., 98, 1897, 10.1172/JCI118991
Hollingsworth, 2007, CD44 regulates macrophage recruitment to the lung in lipopolysaccharide-induced airway disease, Am. J. Respir. Cell Mol. Biol., 37, 248, 10.1165/rcmb.2006-0363OC
Leemans, 2003, CD44 is a macrophage binding site for Mycobacterium tuberculosis that mediates macrophage recruitment and protective immunity against tuberculosis, J. Clin. Invest., 111, 681, 10.1172/JCI200316936
Weiss, 1998, Activation-dependent modulation of hyaluronate-receptor expression and of hyaluronate-avidity by human monocytes, J. Invest. Dermatol., 111, 227, 10.1046/j.1523-1747.1998.00286.x
Levesque, 1997, Cytokine induction of the ability of human monocyte CD44 to bind hyaluronan is mediated primarily by TNF-alpha and is inhibited by IL-4 and IL-13, J. Immunol., 159, 6184, 10.4049/jimmunol.159.12.6184
Levesque, 2001, Activated T lymphocytes regulate hyaluronan binding to monocyte CD44 via production of IL-2 and IFN-gamma, J. Immunol., 166, 188, 10.4049/jimmunol.166.1.188
Levesque, 1999, TNFalpha and IL-4 regulation of hyaluronan binding to monocyte CD44 involves posttranslational modification of CD44, Cell. Immunol., 193, 209, 10.1006/cimm.1999.1456
Ruffell, 2011, Differential use of chondroitin sulfate to regulate hyaluronan binding by receptor CD44 in inflammatory and interleukin 4-activated macrophages, J. Biol. Chem., 286, 19179, 10.1074/jbc.M110.200790
Brown, 2001, Role of sulfation in CD44-mediated hyaluronan binding induced by inflammatory mediators in human CD14(+) peripheral blood monocytes, J. Immunol., 167, 5367, 10.4049/jimmunol.167.9.5367
McKee, 1996, Hyaluronan (HA) fragments induce chemokine gene expression in alveolar macrophages: the role of HA size and CD44, J. Clin. Invest., 98, 2403, 10.1172/JCI119054
Rayahin, 2015, High and low molecular weight hyaluronic acid differentially influence macrophage activation, ACS Biomater. Sci. Eng., 1, 481, 10.1021/acsbiomaterials.5b00181
McKee, 1997, Hyaluronan fragments induce nitric-oxide synthase in murine macrophages through a nuclear factor κB-dependent mechanism, J. Biol. Chem., 272, 8013, 10.1074/jbc.272.12.8013
Yamawaki, 2009, Hyaluronan receptors involved in cytokine induction in monocytes, Glycobiology, 19, 83, 10.1093/glycob/cwn109
He, 2013, Immobilized heavy chain-hyaluronic acid polarizes lipopolysaccharide-activated macrophages toward m2 phenotype, J. Biol. Chem., 288, 25792, 10.1074/jbc.M113.479584
Noble, 1996, Hyaluronan fragments activate an NFKB/IKBa autoregulatory loop in murine macrophages, J. Exp. Med., 183, 2373, 10.1084/jem.183.5.2373
Steffan, 1995, Regulation of IkB alpha phosphorylation by PKC- and Ca(2+)-dependent signal transduction pathways, J. Immunol., 155, 4685, 10.4049/jimmunol.155.10.4685
Oertli, 1998, Mechanisms of hyaluronan-induced up-regulation of ICAM-1 and VCAM-1 expression by murine kidney tubullar epithelial cells: hyaluronan triggers cell adhesion molecule expression through a mechanism involving activation of nuclear factor-kappa B and activat, J. Immunol., 161, 3431, 10.4049/jimmunol.161.7.3431
Bollyky, 2009, CD44 costimulation promotes FoxP3+ regulatory T cell persistence and function via production of IL-2, IL-10, and TGF, J. Immunol., 183, 2232, 10.4049/jimmunol.0900191
Tse, 2013, T cells in atherosclerosis, Int. Immunol., 25, 615, 10.1093/intimm/dxt043
Baaten, 2010, Multifaceted regulation of T cells by CD44, Commun. Integr. Biol., 3, 508, 10.4161/cib.3.6.13495
Siegelman, 2000, The CD44-initiated pathway of T-cell extravasation uses VLA-4 but not LFA-1 for firm adhesion, J. Clin. Invest., 105, 683, 10.1172/JCI8692
Bonder, 2006, Use of CD44 by CD4+ Th1 and Th2 lymphocytes to roll and adhere, Blood, 107, 4798, 10.1182/blood-2005-09-3581
Homann, 2017, Hyaluronan synthase 3 promotes plaque inflammation and atheroprogression, Matrix Biol.
Ait-Oufella, 2006, Natural regulatory T cells control the development of atherosclerosis in mice, Nat. Med., 12, 178, 10.1038/nm1343
Chistiakov, 2015, Vascular smooth muscle cell in atherosclerosis, Acta Physiol. (Oxf.), 214, 33, 10.1111/apha.12466
Foster, 1998, Regulation of CD44 gene expression by the proinflammatory cytokine interleukin-1 beta in vascular smooth muscle cells, J. Biol. Chem., 273, 20341, 10.1074/jbc.273.32.20341
Rudijanto, 2007, The role of vascular smooth muscle cells on the pathogenesis of atherosclerosis, Acta Med. Indones., 39, 86
Allahverdian, 2012, Contribution of monocyte-derived macrophages and smooth muscle cells to arterial foam cell formation, Cardiovasc. Res., 95, 165, 10.1093/cvr/cvs094
Lao, 2015, Endothelial and smooth muscle cell transformation in atherosclerosis, Curr. Opin. Lipidol., 26, 10.1097/MOL.0000000000000219
Cecchettini, 2011, Vascular smooth-muscle-cell activation. Proteomics point of view, Int. Rev. Cell Mol. Biol., 288, 43, 10.1016/B978-0-12-386041-5.00002-9
Lepidi, 2001, MMP9 production by human monocyte-derived macrophages is decreased on polymerized type I collagen, J. Vasc. Surg., 34, 1111, 10.1067/mva.2001.119401
Wesley, 1998, Extracellular matrix modulates macrophage functions characteristic to atheroma: collagen type I enhances acquisition of resident macrophage traits by human peripheral blood monocytes in vitro, Arterioscler. Thromb. Vasc. Biol., 18, 432, 10.1161/01.ATV.18.3.432
Kaplan, 1982, In vitro differentiation of human monocytes. Differences in monocyte phenotypes induced by cultivation on glass or on collagen, J. Exp. Med., 156, 1101, 10.1084/jem.156.4.1101
Rong, 2003, Transdifferentiation of mouse aortic smooth muscle cells to a macrophage-like state after cholesterol loading, Proc. Natl. Acad. Sci. U. S. A., 100, 13531, 10.1073/pnas.1735526100
Grandoch, 2013, Novel effects of adenosine receptors on pericellular hyaluronan matrix: implications for human smooth muscle cell phenotype and interactions with monocytes during atherosclerosis, Basic Res. Cardiol., 108, 10.1007/s00395-013-0340-6
Viola, 2013, Oxidized low density lipoprotein (LDL) affects hyaluronan synthesis in human aortic smooth muscle cells, J. Biol. Chem., 288, 29595, 10.1074/jbc.M113.508341
Bobryshev, 2006, Monocyte recruitment and foam cell formation in atherosclerosis, Micron, 37, 208, 10.1016/j.micron.2005.10.007
Yin, 2014, TLR4-mediated inflammation promotes foam cell formation of vascular smooth muscle cell by upregulating ACAT1 expression, Cell Death Dis., 5, 10.1038/cddis.2014.535
Chaabane, 2014, Smooth muscle cell phenotypic switch: implications for foam cell formation, Curr. Opin. Lipidol., 25, 374, 10.1097/MOL.0000000000000113
Chellan, 2016, Enzymatically modified low-density lipoprotein promotes foam cell formation in smooth muscle cells via macropinocytosis and enhances receptor-mediated uptake of oxidized low-density lipoprotein, Arterioscler. Thromb. Vasc. Biol., 36, 1101, 10.1161/ATVBAHA.116.307306
Feil, 2014, Transdifferentiation of vascular smooth muscle cells to macrophage-like cells during atherogenesis, Circ. Res., 115, 662, 10.1161/CIRCRESAHA.115.304634
Shankman, 2015, KLF4-dependent phenotypic modulation of smooth muscle cells has a key role in atherosclerotic plaque pathogenesis, Nat. Med., 21, 628, 10.1038/nm.3866
Tabata, 2007, Low molecular weight hyaluronan increases the uptaking of oxidized LDL into monocytes, Endocr. J., 54, 685, 10.1507/endocrj.K05-120
Kishikawa, 2006, Glycated albumin and cross-linking of CD44 induce scavenger receptor expression and uptake of oxidized LDL in human monocytes, Biochem. Biophys. Res. Commun., 339, 846, 10.1016/j.bbrc.2005.11.091
Schrijvers, 2005, Phagocytosis of apoptotic cells by macrophages is impaired in atherosclerosis, Arterioscler. Thromb. Vasc. Biol., 25, 1256, 10.1161/01.ATV.0000166517.18801.a7
Bauriedel, 1999, Role of smooth muscle cell death in advanced coronary primary lesions: implications for plaque instability, Cardiovasc. Res., 41, 480, 10.1016/S0008-6363(98)00318-6
Vigetti, 2011, Glycosaminoglycans and glucose prevent apoptosis in 4-methylumbelliferone-treated human aortic smooth muscle cells, J. Biol. Chem., 286, 34497, 10.1074/jbc.M111.266312
Kinscherf, 1997, Induction of mitochondrial manganese superoxide dismutase in macrophages by oxidized LDL: its relevance in atherosclerosis of humans and heritable hyperlipidemic rabbits, FASEB J., 11, 1317, 10.1096/fasebj.11.14.9409551
Kinscherf, 1999, Characterization of apoptotic macrophages in atheromatous tissue of humans and heritable hyperlipidemic rabbits, Atherosclerosis, 144, 33, 10.1016/S0021-9150(99)00037-4
Vivers, 2002, Role of macrophage CD44 in the disposal of inflammatory cell corpses, Clin. Sci. (Lond.), 103, 441, 10.1042/cs1030441
Hart, 1997, CD44 regulates phagocytosis of apoptotic neutrophil granulocytes, but not apoptotic lymphocytes, by human macrophages, J. Immunol., 159, 919, 10.4049/jimmunol.159.2.919
Hart, 2012, Characterization of the effects of cross-linking of macrophage CD44 associated with increased phagocytosis of apoptotic PMN, PLoS One, 7, 10.1371/journal.pone.0033142
Teder, 2002, Resolution of lung inflammation by CD44, Science (80-), 296, 155, 10.1126/science.1069659
Linton, 2016, Macrophage apoptosis and efferocytosis in the pathogenesis of atherosclerosis, Circ. J., 80, 2259, 10.1253/circj.CJ-16-0924
Feig, 2011, Reversal of hyperlipidemia with a genetic switch favorably affects the content and inflammatory state of macrophages in atherosclerotic plaques, Circulation, 123, 989, 10.1161/CIRCULATIONAHA.110.984146
Reis, 2001, Dramatic remodeling of advanced atherosclerotic plaques of the apolipoprotein e-deficient mouse in a novel transplantation model, J. Vasc. Surg., 34, 541, 10.1067/mva.2001.115963
Verschuren, 2009, LXR agonist suppresses atherosclerotic lesion growth and promotes lesion regression in apoE*3Leiden mice: time course and mechanisms, J. Lipid Res., 50, 301, 10.1194/jlr.M800374-JLR200
Lin, 2010, The role of CD4+CD25+ regulatory T cells in macrophage-derived foam-cell formation, J. Lipid Res., 51, 1208, 10.1194/jlr.D000497
Koltsova, 2012, Dynamic T cell-APC interactions sustain chronic inflammation in atherosclerosis, J. Clin. Invest., 122, 3114, 10.1172/JCI61758
Cho, 2007, Induction of dendritic cell-like phenotype in macrophages during foam cell formation, Physiol. Genomics, 29, 149, 10.1152/physiolgenomics.00051.2006
Hegde, 2008, CD44 mobilization in allogeneic dendritic cell-T cell immunological synapse plays a key role in T cell activation, J. Leukoc. Biol., 84, 134, 10.1189/jlb.1107752
Do, 2004, Role of CD44 and hyaluronic acid (HA) in activation of alloreactive and antigen-specific T cells by bone marrow-derived dendritic cells, J. Immunother., 27, 1, 10.1097/00002371-200401000-00001
Termeer, 2003, Targeting dendritic cells with CD44 monoclonal antibodies selectively inhibits the proliferation of naive CD4+ T-helper cells by induction of FAS-independent T-cell apoptosis, Immunology, 109, 32, 10.1046/j.1365-2567.2003.01617.x
Hartwig, 2015, Neutrophils in atherosclerosis: a brief overview, Hamostaseologie, 35, 121, 10.5482/HAMO-14-09-0040
Krettek, 2004, Enhanced expression of CD44 variants in human atheroma and abdominal aortic aneurysm: possible role for a feedback loop in endothelial cells, Am. J. Pathol., 165, 1571, 10.1016/S0002-9440(10)63414-1
Watanabe, 2016, Atheroprotective effects of tumor necrosis factor–stimulated gene-6, JACC Basic Transl. Sci., 1, 494, 10.1016/j.jacbts.2016.07.008
Taher, 2016, Phenotypic transformation of intimal and adventitial lymphatics in atherosclerosis: a regulatory role for soluble VEGF receptor 2, FASEB J., 30, 2490, 10.1096/fj.201500112
Singh, 2007, Osteopontin: a novel inflammatory mediator of cardiovascular disease, Front. Biosci., 12, 214, 10.2741/2059
Ikeda, 1993, Osteopontin mRNA is expressed by smooth muscle-derived foam cells in human atherosclerotic lesions of the aorta, J. Clin. Invest., 92, 2814, 10.1172/JCI116901
Chung, 2016, Targeting and therapeutic peptides in nanomedicine for atherosclerosis, Exp. Biol. Med. (Maywood), 10.1177/1535370216640940