The Bose-Einstein Condensate and Cold Atom Laboratory
Tóm tắt
Từ khóa
Tài liệu tham khảo
Foot CJ. Atomic physics. Oxford master series in physics. Oxford: Oxford University Press; 2005.
Berman PR. Atom interferometry. San Diego: Academic Press; 1997.
Gaunt AL, Schmidutz TF, Gotlibovych I, Smith RP, Hadzibabic Z. Bose-Einstein condensation of atoms in a uniform potential. Phys Rev Lett. 2013;110(20):1.
Sun K, Padavić K, Yang F, Vishveshwara S, Lannert C. Static and dynamic properties of shell-shaped condensates. Phys Rev A. 2018;98(1):013609.
Schlippert D, Hartwig J, Albers H, Richardson LL, Schubert C, Roura A et al.. Quantum test of the universality of free fall. Phys Rev Lett. 2014;112(20):203002.
Berrada T, Van Frank S, Bücker R, Schumm T, Schaff JF, Schmiedmayer J. Integrated Mach-Zehnder interferometer for Bose-Einstein condensates. Nat Commun. 2013;4:1–8.
Leanhardt AE, Pasquini TA, Saba M, Schirotzek A, Shin Y, Kielpinski D et al.. Cooling Bose-Einstein condensates below 500 picokelvin. Science. 2003;301(5639):1513–5.
Harber DM, Obrecht JM, McGuirk JM, Cornell EA. Measurement of the Casimir-Polder force through center-of-mass oscillations of a Bose-Einstein condensate. Phys Rev A. 2005;72(3):1.
Lundblad N, Carollo RA, Lannert C, Gold MJ, Jiang X, Paseltiner D et al.. Shell potentials for microgravity Bose-Einstein condensates. npj Microgravity. 2019;5(1):30.
Kovachy T, Asenbaum P, Overstreet C, Donnelly CA, Dickerson SM, Sugarbaker A et al.. Quantum superposition at the half-metre scale. Nature. 2015;528(7583):530–3.
Burrage C, Copeland EJ, Hinds EAA. Probing dark energy with atom interferometry. J Cosmol Astropart Phys. 2015;2015(03):042.
Jaffe M, Haslinger P, Xu V, Hamilton P, Upadhye A, Elder B et al.. Testing sub-gravitational forces on atoms from a miniature in-vacuum source mass. Nat Phys. 2017;13(10):938–42.
Sabulsky DO, Dutta I, Hinds EA, Elder B, Burrage C, Copeland EJ. Experiment to detect dark energy forces using atom interferometry. Phys Rev Lett. 2019;123:061102.
Graham PW, Hogan JM, Kasevich MA, Rajendran S, Romani RW. Mid-band gravitational wave detection with precision atomic sensors. arXiv. 2017.
Tino GM, Bassi A, Bianco G, Bongs K, Bouyer P, Cacciapuoti L et al.. SAGE: a proposal for a space atomic gravity explorer. Eur Phys J D. 2019;73(11):228.
El-Neaj YA, Alpigiani C, Amairi-Pyka S, Araújo H, Balaž A, Bassi A et al.. AEDGE: atomic experiment for dark matter and gravity exploration in space. EPJ Quantum Technol. 2020;7(1):6.
Bidel Y, Zahzam N, Blanchard C, Bonnin A, Cadoret M, Bresson A et al.. Absolute marine gravimetry with matter-wave interferometry. Nat Commun. 2018;9(1):627.
Barrett B, Bertoldi A, Bouyer P. Inertial quantum sensors using light and matter. Phys Scr. 2016;91(5):053006.
van Zoest T, Gaaloul N, Singh Y, Ahlers H, Herr W, Seidel ST et al.. Bose-Einstein condensation in microgravity. Science. 2010;328(5985):1540–3.
Müntinga H, Ahlers H, Krutzik M, Wenzlawski A, Arnold S, Becker D et al.. Interferometry with Bose-Einstein condensates in microgravity. Phys Rev Lett. 2013;110(9):093602.
Stern G, Battelier B, Geiger R, Varoquaux G, Villing A, Moron F et al.. Light-pulse atom interferometry in microgravity. Eur Phys J D. 2009;53(3):353–7.
Langlois M, De Sarlo L, Holleville D, Dimarcq N, Schaff JF, Bernon S. Compact cold-atom clock for onboard timebase: tests in reduced gravity. Phys Rev Appl. 2018;10(6):064007.
Rudolph J, Herr W, Grzeschik C, Sternke T, Grote A, Popp M et al.. A high-flux BEC source for mobile atom interferometers. New J Phys. 2015;17(6):065001.
Vogt C, Woltmann M, Herrmann S, Lämmerzahl C, Albers H, Schlippert D et al.. Evaporative cooling from an optical dipole trap in microgravity. Phys Rev A. 2020;101:013634.
Lotz C, Wessarges Y, Hermsdorf J, Ertmer W, Overmeyer L. Novel active driven drop tower facility for microgravity experiments investigating production technologies on the example of substrate-free additive manufacturing. Adv Space Res. 2018;61(8):1967–74.
Chiow S, Yu N. Multiloop atom interferometer measurements of chameleon dark energy in microgravity. Phys Rev D. 2018;97:044043.
Condon G, Rabault M, Barrett B, Chichet L, Arguel R, Eneriz-Imaz H et al.. All-optical Bose-Einstein condensates in microgravity. Phys Rev Lett. 2019;123:240402.
Becker D, Lachmann MD, Seidel ST, Ahlers H, Dinkelaker AN, Grosse J et al.. Space-borne Bose–Einstein condensation for precision interferometry. Nature. 2018;562(7727):391–5.
Schkolnik V, Döringshoff K, Gutsch FB, Oswald M, Schuldt T, Braxmaier C et al.. JOKARUS - design of a compact optical iodine frequency reference for a sounding rocket mission. EPJ Quantum Technol. 2017;4(1):9.
Döringshoff K, Gutsch FB, Schkolnik V, Kürbis C, Oswald M, Pröbster B et al.. Iodine frequency reference on a sounding rocket. Phys Rev Appl. 2019;11(5):1.
Dinkelaker AN, Schiemangk M, Schkolnik V, Kenyon A, Lampmann K, Wenzlawski A et al.. Autonomous frequency stabilization of two extended-cavity diode lasers at the potassium wavelength on a sounding rocket. Appl Opt. 2017;56(5):1388.
Elliott E, Krutzik M, Williams J, Thompson R, Aveline D. NASA’s Cold Atom Lab (CAL): system development and ground test status. npj Microgravity. 2018;4(1):16.
Aveline DC, Williams JR, Elliott ER, Dutenhoffer C, Kellogg JR, Kohel JM et al.. Observation of Bose–Einstein condensates in an Earth-orbiting research lab. Nature. 2020;582(7811):193–7.
Ammann H, Christensen N. Delta kick cooling: a new method for cooling atoms. Phys Rev Lett. 1997;78(2):2088–91.
Meister M, Roura A, Rasel EM, Schleich WP. The space atom laser: an isotropic source for ultra-cold atoms in microgravity. New J Phys. 2019;21(1):013039.
Barrett B, Antoni-Micollier L, Chichet L, Battelier B, Lévèque T, Landragin A et al.. Dual matter-wave inertial sensors in weightlessness. Nat Commun. 2016;7:13786.
Hogan JM, Johnson DMS, Kasevich MA. Light-pulse atom interferometry. 2008. arXiv:0806.3261.
Bongs K, Launay R, Kasevich MA. High-order inertial phase shifts for time-domain atom interferometers. Appl Phys B. 2006;84:599.
Bordé CJ. Quantum theory of atom-wave beam splitters and application to multidimensional atomic gravito-inertial sensors. Gen Relativ Gravit. 2004;36(3):475–502.
Barrett B, Cheiney P, Battelier B, Napolitano F, Bouyer P. Multidimensional atom optics and interferometry. Phys Rev Lett. 2019;122:043604.
Herrmann S, Göklü E, Müntinga H, Resch A, Van Zoest T, Dittus H et al.. Testing fundamental physics with degenerate quantum gases in microgravity. Microgravity Sci Technol. 2010;22(4):529–38.
Bongs K, Holynski M, Vovrosh J, Bouyer P, Condon G, Rasel E et al.. Taking atom interferometric quantum sensors from the laboratory to real-world applications. Nat Rev Phys. 2019;1:731.
Amelino-Camelia G, Lämmerzahl C, Mercati F, Tino GM. Constraining the energy-momentum dispersion relation with Planck-scale sensitivity using cold atoms. Phys Rev Lett. 2009;103:171302.
Arvanitaki A, Graham PW, Hogan JM, Rajendran S, Van Tilburg K. Search for light scalar dark matter with atomic gravitational wave detectors. Phys Rev D. 2018;117:075020.
Geraci AA, Derevianko A. Sensitivity of atom interferometry to ultralight scalar field dark matter. Phys Rev Lett. 2016;117:261301.
Rosi G, D’Amico G, Cacciapuoti L, Sorrentino F, Prevedelli M, Zych M et al.. Quantum test of the equivalence principle for atoms in coherent superposition of internal energy states. Nat Commun. 2017;8:15529.
Duan XC, Deng XB, Zhou MK, Zhang K, Xu WJ, Xiong F et al.. Test of the universality of free fall with atoms in different spin orientations. Phys Rev Lett. 2016;117:023001.
Zhou L, Long S, Tang B, Chen X, Gao F, Peng W et al.. Test of equivalence principle at 10-8 level by a dual-species double-diffraction Raman atom interferometer. Phys Rev Lett. 2015;115(1):1.
Bonnin A, Zahzam N, Bidel Y, Bresson A. Simultaneous dual-species matter-wave accelerometer. Phys Rev Lett A. 2013;88(4):043615.
Tarallo MG, Mazzoni T, Poli N, Sutyrin DV, Zhang X, Tino GM. Test of Einstein equivalence principle for 0-spin and half-integer-spin atoms: search for spin-gravity coupling effects. Phys Rev Lett. 2014;113(2):023005.
Xu V, Jaffe M, Panda CD, Kristensen SL, Clark LW, Müller H. Probing gravity by holding atoms for 20 seconds. Science. 2019;336:745.
Savoie D, Altorio M, Fang B, Sidorenkov LA, Geiger R, Landragin A. Interleaved atom interferometry for high-sensitivity inertial measurements. Sci Adv. 2018;4:eaau7948.
Dutta I, Savoie D, Fang B, Venon B, Garrido Alzar CL, Geiger R et al.. Continuous cold-atom inertial sensor with 1 nrad/sec rotation stability. Phys Rev Lett. 2016;116:183003.
Berg P, Abend S, Tackmann G, Schubert C, Giese E, Schleich WP et al.. Composite-light-pulse technique for high-precision atom interferometry. Phys Rev Lett. 2015;114:063002.
Stockton JK, Takase K, Kasevich MA. Absolute geodetic rotation measurement using atom interferometry. Phys Rev Lett. 2011;107:133001.
Bidel Y, Zahzam N, Bresson A, Blanchard C, Cadoret M, Olesen AV et al.. Absolute airborne gravimetry with a cold atom sensor. J Geod. 2020;94(2):20.
Wu W, Pagel W, Malek BS, Nguyen TH, Zi F, Scheirer DS et al.. Gravity surveys using a mobile atom interferometer. Sci Adv. 2019;5:eaau0800.
Ménoret V, Vermeulen P, Le Moigne N, Bonvalot S, Bouyer P, Landragin A et al.. Gravity measurements below $10^{-9}\ g$ with a transportable absolute quantum gravimeter. Sci Rep. 2018;8(1):12300.
Freier C, Hauth M, Schkolnik V, Leykauf B, Schilling M, Wziontek H et al.. Mobile quantum gravity sensor with unprecedented stability. J Phys Conf Ser. 2016;723:012050. 8th Symposium on Frequency Standards and Metrology 2015 12–16 October 2015, Potsdam, Germany.
Hu ZK, Sun BL, Duan XC, Zhou MK, Chen LL, Zhan S et al.. Demonstration of an ultrahigh-sensitivity atom-interferometry absolute gravimeter. Phys Rev Lett. 2013;88:043610.
Louchet-Chauvet A, Farah T, Bodart Q, Clairon A, Landragin A, Merlet S et al.. The influence of transverse motion within an atomic gravimeter. New J Phys. 2011;13(6):065025.
Peters A, Chung KY, Chu S. Measurement of gravitational acceleration by dropping atoms. Nature. 1999;400:849–52.
Cheiney P, Fouché L, Templier S, Napolitano F, Battelier B, Bouyer P et al.. Navigation-compatible hybrid quantum accelerometer using a Kalman filter. Phys Rev Appl. 2018;10:034030.
Pandey S, Mas H, Drougakis G, Thekkeppatt P, Bolpasi V, Vasilakis G et al.. Hypersonic Bose–Einstein condensates in accelerator rings. Nature. 2019;570:205–9.
Zhai Y, Carson CHH, Henderson VAA, Griffin PFF, Riis E, Arnold ASS. Talbot-enhanced, maximum-visibility imaging of condensate interference. Optica. 2018;5(1):80.
McDonald GD, Keal H, Altin PA, Debs JE, Bennetts S, Kuhn CCN et al.. Optically guided linear Mach-Zehnder atom interferometer. Phys Rev A. 2013;87:013632.
Andia M, Jannin R, Nez F, Biraben F, Guellati-Khélifa S, Cladé P. Compact atomic gravimeter based on a pulsed and accelerated optical lattice. Phys Rev A. 2013;88:031605.
Charriere R, Cadoret M, Zahzam N, Bidel Y, Bresson A. Local gravity measurement with the combination of atom interferometry and Bloch oscillations. Phys Rev A. 2012;85(1):013639.
Su EJ, Wu S, Prentiss MG. Atom interferometry using wave packets with constant spatial displacements. Phys Rev A. 2010;81:043631.
Rosi G, Sorrentino F, Cacciapuoti L, Prevedelli M, Tino G. Precision measurement of the Newtonian gravitational constant using cold atoms. Nature. 2014;510(7506):518–21.
Hartwig J, Abend S, Schubert C, Schlippert D, Ahlers H, Posso-Trujillo K et al.. Testing the universality of free fall with rubidium and ytterbium in a very large baseline atom interferometer. New J Phys. 2015;17(3):1.
Kasevich M, Chu S. Atomic interferometry using stimulated Raman transitions. Phys Rev Lett. 1991;67:181–4.
Lepoutre S, Lonij VPA, Jelassi H, Trénec G, Büchner M, Cronin AD et al.. Atom interferometry measurement of the atom-surface van der Waals interaction. Eur Phys J D. 2011;62(3):309–25.
Alauze X, Bonnin A, Solaro C, Santos FPD. A trapped ultracold atom force sensor with a μm-scale spatial resolution. New J Phys. 2018;20(8):083014.
Trimeche A, Battelier B, Becker D, Bertoldi A, Bouyer P, Braxmaier C et al.. Concept study and preliminary design of a cold atom interferometer for space gravity gradiometry. Class Quantum Gravity. 2019;36:215004.
Douch K, Wu H, Schubert C, Müller J, dos Santos FP. Simulation-based evaluation of a cold atom interferometry gradiometer concept for gravity field recovery. Adv Space Res. 2018;61:1307.
Carraz O, Siemes C, Massotti L, Haagmans R, Silvestrin P. A spaceborne gravity gradiometer concept based on cold atom interferometers for measuring Earth’s gravity field. Microgravity Sci Technol. 2014;26:139.
Tino GM et al.. Precision gravity tests with atom interferometry in space. Nucl Phys B, Proc Suppl. 2013;243(244):203–17.
Aguilera D et al.. STE-QUEST - test of the universality of free fall using cold atom interferometry. Class Quantum Gravity. 2014;31:115010.
Williams J et al.. Quantum test of the equivalence principle and space-time aboard the International Space Station. New J Phys. 2016;18:025018.
Fixler JB, Foster GT, McGuirk JM, Kasevich MA. Atom interferometer measurement of the Newtonian constant of gravity. Science. 2007;315:74.
Hohensee MA, Estey B, Hamilton P, Zeilinger A, Müller H. Force-free gravitational redshift: proposed gravitational Aharonov-Bohm experiment. Phys Rev Lett. 2012;108:230404.
Hogan JM, Kasevich MA. Atom-interferometric gravitational-wave detection using heterodyne laser links. Phys Rev A. 2016;94:033632.
Hogan JM et al.. An atomic gravitational wave interferometric sensor in low Earth orbit (AGIS-LEO). Gen Relativ Gravit. 2011;43:1953.
Dimopoulos S, Graham PW, Hogan JM, Kasevich MA, Rajendran S. Atomic gravitational wave interferometric sensor. Phys Rev D. 2008;78:122002.
Rudolph J. Matter-Wave optics with Bose-Einstein condensates in microgravity [Dissertation]. Leibniz Universität Hannover; 2016.
Kovachy T, Hogan JM, Sugarbaker A, Dickerson SM, Donnelly CA, Overstreet C et al.. Matter wave lensing to picokelvin temperatures. Phys Rev Lett. 2015;114:143004.
Inouye S, Andrews MR, Stenger J, Mlesner HJ, Stamper-Kurn DM, Ketterle W. Observation of Feshbach resonances in a Bose-Einstein condensate. Nature. 1998;392(6672):151–4.
Chin C, Grimm R, Julienne P, Tiesinga E. Feshbach resonances in ultracold gases. Rev Mod Phys. 2010;82:1225–86.
McDonald GD, Kuhn CCN, Hardman KS, Bennetts S, Everitt PJ, Altin PA et al.. Bright solitonic matter-wave interferometer. Phys Rev Lett. 2014;113:013002.
Pasquini TA, Saba M, Jo GB, Shin Y, Ketterle W, Pritchard DE et al.. Low velocity quantum reflection of Bose-Einstein condensates. Phys Rev Lett. 2006;97(9):093201.
Olf R, Fang F, Marti GE, MacRae A, Stamper-Kurn DM. Thermometry and cooling of a Bose gas to 0.02 times the condensation temperature. Nat Phys. 2015;11(9):720–3.
Chu S, Bjorkholm J, Ashkin A, Cable A. Experimental observation of optically trapped atoms. Phys Rev Lett. 1986;57(3):314.
Stamper-Kurn DM, Andrews MR, Chikkatur AP, Inouye S, Miesner HJ, Stenger J et al.. Optical confinement of a Bose-Einstein condensate. Phys Rev Lett. 1998;80(10):2027–30.
Baranov MA. Theoretical progress in many-body physics with ultracold dipolar gases. Phys Rep. 2008;464(3):71–111.
Stamper-Kurn DM, Ueda M. Spinor Bose gases: symmetries, magnetism, and quantum dynamics. Rev Mod Phys. 2013;85(3):1191–244.
Roberts JL, Claussen NR, Cornish SL, Wieman CE. Magnetic field dependence of ultracold inelastic collisions near a Feshbach resonance. Phys Rev Lett. 2000;85(4):728–31.
Petrov DS. Quantum mechanical stabilization of a collapsing Bose-Bose mixture. Phys Rev Lett. 2015;115(15):155302.
Cabrera CR, Tanzi L, Sanz J, Naylor B, Thomas P, Cheiney P et al.. Quantum liquid droplets in a mixture of Bose-Einstein condensates. Science. 2018;359(6373):301–4.
Semeghini G, Ferioli G, Masi L, Mazzinghi C, Wolswijk L, Minardi F et al.. Self-bound quantum droplets of atomic mixtures in free space. Phys Rev Lett. 2018;120(23):235301.
D’Incao JP, Krutzik M, Elliott E, Williams JR. Enhanced association and dissociation of heteronuclear Feshbach molecules in a microgravity environment. Phys Rev A. 2017;95(1):012701.
Braaten E, Hammer HW. Universality in few-body systems with large scattering length. Phys Rep. 2006;428(5):259–390.
Bedington R, Arrazola JM, Ling A. Progress in satellite quantum key distribution. npj Quantum Information. 2017;3(1):30.
Liao SK, Cai WQ, Handsteiner J, Liu B, Yin J, Zhang L et al.. Satellite-relayed intercontinental quantum network. Phys Rev Lett. 2018;120:030501.
Ma L, Slattery O, Tang X. Optical quantum memory based on electromagnetically induced transparency. J Opt. 2017;19(4):043001.
NASA. SSP57000 pressurized payloads interface requirements document. International Space Station Program; 2018.
NASA. SSP51700 payload safety policy and requirements for the ISS. International Space Station Program; 2010.
Kubelka-Lange A, Herrmann S, Grosse J, Lämmerzahl C, Rasel EM, Braxmaier C. A three-layer magnetic shielding for the MAIUS-1 mission on a sounding rocket. Rev Sci Instrum. 2016;87(6):063101.
Haslinger P, Jaffe M, Xu V, Schwartz O, Sonnleitner M, Ritsch-Marte M et al.. Attractive force on atoms due to blackbody radiation. Nat Phys. 2018;14(3):257–60.
Piest B, Bartosch W, Becker D, Böhm J, Döringshof K, Elsen M et al.. MAIUS-2/-3: a system for two-species atom interferometry in space. In: Proceedings of the 24th ESA symposium on European ROCKET & BALLOON programmes and related research (2019); 2020.
Chaudhuri S, Roy S, Unnikrishnan CS. Realization of an intense cold Rb atomic beam based on a two-dimensional magneto-optical trap: experiments and comparison with simulations. Phys Rev A. 2006;74(2):1.
Zobay O, Garraway BM. Two-dimensional atom trapping in field-induced adiabatic potentials. Phys Rev Lett. 2001;86:1195–8.
Heathcote WH, Nugent E, Sheard BT, Foot CJ. A ring trap for ultracold atoms in an RF-dressed state. New J Phys. 2008;10:043012.
Morizot O, Colombe Y, Lorent V, Perrin H, Garraway BM. Ring trap for ultracold atoms. Phys Rev A. 2006;74:023617.
Lévèque T, Gauguet A, Michaud F, Pereira Dos Santos F, Landragin A. Enhancing the area of a Raman atom interferometer using a versatile double-diffraction technique. Phys Rev Lett. 2009;103(8):080405.
Roura A, Zeller W, Schleich WP. Overcoming loss of contrast in atom interferometry due to gravity gradients. New J Phys. 2014;16(12):123012.
Lan SY, Kuan PC, Estey B, Haslinger P, Müller H. Influence of the Coriolis force in atom interferometry. Phys Rev Lett. 2012;108(9):090402.
Roura A. Circumventing Heisenberg’s uncertainty principle in atom interferometry tests of the equivalence principle. Phys Rev Lett. 2017;118:160401.
Overstreet C, Asenbaum P, Kovachy T, Notermans R, Hogan JM, Kasevich MA. Effective inertial frame in an atom interferometric test of the equivalence principle. Phys Rev Lett. 2018;120:183604.
Roura A. Compensation of gravity gradients and rotations in precision atom interferometry. In: 656th WE-Heraeus-seminar: fundamental physics in space. Bremen; 2017. p. 29–35. https://www.zarm.uni-bremen.de/fps2017/download.html.
Franke-Arnold S, Leach J, Padgett MJ, Lembessis VE, Ellinas D, Wright AJ et al.. Optical ferris wheel for ultracold atoms. Opt Express. 2007;15(14):8619.
Henderson K, Ryu C, MacCormick C, Boshier MG. Experimental demonstration of painting arbitrary and dynamic potentials for Bose-Einstein condensates. New J Phys. 2009;11(4):1.
Trypogeorgos D, Harte T, Bonnin A, Foot C. Precise shaping of laser light by an acousto-optic deflector. Opt Express. 2013;21(21):24837.
Bell TA, Glidden JAP, Humbert L, Bromley MWJ, Haine SA, Davis MJ et al.. Bose–Einstein condensation in large time-averaged optical ring potentials. New J Phys. 2016;18(3):035003.
Bruce GD, Mayoh J, Smirne G, Torralbo-Campo L, Cassettari D. A smooth, holographically generated ring trap for the investigation of superfluidity in ultracold atoms. Phys Scr. 2011;T143(T143):014008.
Lee JG, Hill WT. Spatial shaping for generating arbitrary optical dipole traps for ultracold degenerate gases. Rev Sci Instrum. 2014;85(10):103106.
Schkolnik V, Hellmig O, Wenzlawski A, Grosse J, Kohfeldt A, Döringshoff K et al.. A compact and robust diode laser system for atom interferometry on a sounding rocket. Appl Phys B. 2016;122(8):7.
Pahl J, Dinkelaker AN, Grzeschik C, Kluge J, Schiemangk M, Wicht A et al.. Compact and robust diode laser system technology for dual-species ultracold atom experiments with rubidium and potassium in microgravity. Appl Opt. 2019;58(20):5456.
Lezius M, Wilken T, Deutsch C, Giunta M, Mandel O, Thaller A et al.. Space-borne frequency comb metrology. Optica. 2016;3(12):1381.
Wicht A, Bawamia A, Krüger M, Kürbis C, Schiemangk M, Smol R et al.. Narrow linewidth diode laser modules for quantum optical sensor applications in the field and in space. In: Glebov AL, Leisher PO, editors. Components and packaging for laser systems III. vol. 10085; 2017. 100850F.
Schiemangk M, Lampmann K, Dinkelaker A, Kohfeldt A, Krutzik M, Kürbis C et al.. High-power, micro-integrated diode laser modules at 767 and 780 nm for portable quantum gas experiments. Appl Opt. 2015;54(17):5332.
Mihm M, Marburger JP, Wenzlawski A, Hellmig O, Anton O, Döringshoff K et al.. ZERODUR® based optical systems for quantum gas experiments in space. Acta Astronaut. 2019;159:166–9.
Luvsandamdin E, Spießberger S, Schiemangk M, Sahm A, Mura G, Wicht A et al.. Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space. Appl Phys B. 2013;111(2):255–60.
Luvsandamdin E, Kürbis C, Schiemangk M, Sahm A, Wicht A, Peters A et al.. Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space. Opt Express. 2014;22(7):7790.
Kürbis C, Bawamia A, Krüger M, Smol R, Peters A, Wicht A et al.. Extended cavity diode laser master-oscillator-power-amplifier for operation of an iodine frequency reference on a sounding rocket. Appl Opt. 2020;59(2):253.
Di Domenico G, Schilt S, Thomann P. Simple approach to the relation between laser frequency noise and laser line shape. Appl Opt. 2010;49(25):4801.
Duncker H, Hellmig O, Wenzlawski A, Grote A, Rafipoor AJ, Rafipoor M et al.. Ultrastable, Zerodur-based optical benches for quantum gas experiments. Appl Opt. 2014;53(20):4468.
Marburger JP, Mihm M, Hellmig O, Wenzlawski A, Windpassinger P. Highly stable Zerodur based optical benches for microgravity applications and other adverse environments. In: International conference on space optics — ICSO 2018. Proceedings SPIE. vol. 11180; 2019:181.
Weps B, Lüdtke D, Franz T, Maibaum O, Wendrich T, Müntinga H et al.. A model-driven software architecture for ultra-cold gas experiments in space. In: 69th international astronautical congress (IAC); 2018.