The Berezin inequality on domains of infinite measure

Bulletin of Mathematical Sciences - Tập 3 - Trang 173-182 - 2013
Lukas Schimmer1
1Imperial College London, London, UK

Tóm tắt

The Berezin inequality gives an upper bound on the Riesz means of the magnetic Schrödinger operator on a set of finite volume. We find an analogous inequality for the magnetic operator with homogeneous magnetic field on sets whose complement in $$\mathbb{R }^2$$ has finite measure. Similar bounds are obtained for the Heisenberg sub-Laplacian.

Tài liệu tham khảo

Berezin, F.A.: Convex functions of operators. Mat. Sb. (N.S.) 88(130), 268–276 (1972) Berezin, F.A.: Covariant and contravariant symbols of operators. Izv. Akad. Nauk SSSR Ser. Mat. 36, 1134–1167 (1972) Bonfiglioli, A., Lanconelli, E., Uguzzoni, F.: Stratified Lie groups and potential theory for their sub-Laplacians. Springer Monographs in Mathematics. Springer, Berlin (2007) Erdős, L., Loss, M., Vougalter, V.: Diamagnetic behavior of sums of Dirichlet eigenvalues. Ann. Inst. Fourier (Grenoble) 50(3), 891–907 (2000) Frank, R.L., Lewin, M., Lieb, E.H., Seiringer, R.: A positive density analogue of the Lieb–Thirring Inequality. Duke Math. J. 162(3), 435–495 (2013) Frank, R.L., Loss, M., Weidl, T.: Pólya’s conjecture in the presence of a constant magnetic field. J. Eur. Math. Soc. (JEMS) 11(6), 1365–1383 (2009) Frank, R.L., Olofsson, R.: Eigenvalue bounds for Schrödinger operators with a homogeneous magnetic field. Lett. Math. Phys. 97(3), 227–241 (2011) Hansson, A.M., Laptev, A.: Sharp spectral inequalities for the Heisenberg Laplacian. In: Groups and analysis. London Mathe. Soc. Lecture Note Ser., vol. 354, pp. 100–115. Cambridge University Press, London (2008) Laptev, A.: Dirichlet and Neumann eigenvalue problems on domains in Euclidean spaces. J. Funct. Anal. 151(2), 531–545 (1997) Laptev, A., Safarov, Y.: A generalization of the Berezin–Lieb inequality. In: Contemporary mathematical physics. Amer. Math. Soc. Transl. Ser. 2, vol. 175, pp. 69–79. Amer. Math. Soc., Providence, RI (1996) Laptev, A., Weidl, T.: Recent results on Lieb–Thirring inequalities. In: Journées “Équations aux Dérivées Partielles” (La Chapelle sur Erdre, 2000), pp. Exp. No. XX, 14. University of Nantes, Nantes (2000) Laptev, A., Weidl, T.: Sharp Lieb–Thirring inequalities in high dimensions. Acta Math. 184(1), 87–111 (2000) Li, P., Yau, S.T.: On the Schrödinger equation and the eigenvalue problem. Comm. Math. Phys. 88(3), 309–318 (1983) Lieb, E.H.: The classical limit of quantum spin systems. Comm. Math. Phys. 31, 327–340 (1973) Reed, M., Simon, B.: Methods of modern mathematical physics. I. Functional analysis. pp. XVii+325. Academic Press, New York (1972) Strichartz, R.S.: Estimates for sums of eigenvalues for domains in homogeneous spaces. J. Funct. Anal. 137(1), 152–190 (1996) Weyl, H.: Das asymptotische Verteilungsgesetz der Eigenwerte linearer partieller Differentialgleichungen (mit einer Anwendung auf die Theorie der Hohlraumstrahlung). Math. Ann. 71(4), 441–479 (1912)