The Bartle-Dunford-Schwartz theorem and projection operators in certain banach lattices

Springer Science and Business Media LLC - Tập 179 Số 1 - 2001
Cheryl Rae Huff1, Paul W. Lewis1
1Mathematics Department, University of North Texas, Denton

Tóm tắt

Từ khóa


Tài liệu tham khảo

R. G. Bartle—N. Dunford—J. T. Schwartz,Weak Compactness and Vector Measures, Can. J. Math.,7 (1955), pp. 289–305.

W. C. Bell—R. G. Bilyeu—P. W. Lewis,Uniform Exhaustivity and Banach Lattices, Annali di Matematica pura ed Applicata (IV),CXLIV (1986), pp. 57–74.

R. G. Bilyeu—P. W. Lewis,Uniform Differentiability, Uniform Absolute Continuity and the Vitali-Hahn-Saks theorem, Rocky Mtn. J. Math.,10 (1980), pp. 533–557.

J. K. Brooks,Equicontinuous Sets of Measures and Applications to Vitali's Integral Convergence Theorem and Control Measures, Advances in Math.,10 (1973) pp. 165–171.

L. Drewnowski,Topological Rings of Sets, Continuous Set Functions, Integration, Acad. Polon. Sci. Serie Math. astr et phys.,20 (1972), pp. 277–286.

L. Drewnowski,Equivalence of Brooks-Jewett, Vitali-Hahn-Saks and Nikodym Theorems, Bull. Acad. Polon. Sciences, Series math., astr. et. phys.,20 (1972), pp. 725–731.

S. Kakutani,Concrete Representation of Abstract(L)-spaces and the Mean Ergodic Theorem, Ann. of Math.,42 (1941), pp. 523–537.

H. H. Schaefer,Banach Lattices and Positive Operators, Springer-Verlag, New York (1974).