The Banach and Reich contractions in $$\varvec{b_v(s)}$$ b v ( s ) -metric spaces

Zoran D. Mitrović1, Stojan Radenović2
1Nonlinear Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam
2Faculty of Mechanical Engineering, University of Belgrade, Beograd 35, Serbia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 30, 26–37 (1989)

Branciari, A.: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 57, 31–37 (2000)

Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)

Dominguez Benavides, T., Lorenzo, J., Gatica, I.: Some generalizations of Kannan’s fixed point theorem in $$K$$ K -metric spaces. Fixed Point Theory 13(1), 73–83 (2012)

Dung, N.V., Hang, V.T.L.: On relaxations of contraction constants and Caristi’s theorem in $$b$$ b -metric spaces. J. Fixed Point Theory Appl. 18, 267–284 (2016)

George, R., Radenović, S., Reshma, K.P., Shukla, S.: Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 8, 1005–1013 (2015)

Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)

Miculescu, R., Mihail, A.: New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. (2017). doi: 10.1007/s11784-016-0400-2

Mitrović, Z.D.: On an open problem in rectangular b-metric space. J. Anal. (2017). doi: 10.1007/s41478-017-0036-7

Reich, S.: Some remarks concerning contraction mappings. Canad. Math. Bull. 14, 121–124 (1971)

Suzuki, T., Alamri, B., Khan, L.A.: Some notes on fixed point theorems in $$v$$ v -generalized metric space. Bull. Kyushu Inst. Tech. Pure Appl. Math. 62, 15–23 (2015)