The Banach and Reich contractions in $$\varvec{b_v(s)}$$ b v ( s ) -metric spaces
Tóm tắt
Từ khóa
Tài liệu tham khảo
Bakhtin, I.A.: The contraction mapping principle in quasimetric spaces. Funct. Anal. Ulianowsk Gos. Ped. Inst. 30, 26–37 (1989)
Branciari, A.: A fixed point theorem of Banach-Caccioppoli type on a class of generalized metric spaces. Publ. Math. Debrecen 57, 31–37 (2000)
Czerwik, S.: Contraction mappings in b-metric spaces. Acta Math. Inform. Univ. Ostrav. 1, 5–11 (1993)
Dominguez Benavides, T., Lorenzo, J., Gatica, I.: Some generalizations of Kannan’s fixed point theorem in $$K$$ K -metric spaces. Fixed Point Theory 13(1), 73–83 (2012)
Dung, N.V., Hang, V.T.L.: On relaxations of contraction constants and Caristi’s theorem in $$b$$ b -metric spaces. J. Fixed Point Theory Appl. 18, 267–284 (2016)
George, R., Radenović, S., Reshma, K.P., Shukla, S.: Rectangular b-metric space and contraction principles. J. Nonlinear Sci. Appl. 8, 1005–1013 (2015)
Kannan, R.: Some results on fixed points. Bull. Calcutta Math. Soc. 60, 71–76 (1968)
Miculescu, R., Mihail, A.: New fixed point theorems for set-valued contractions in b-metric spaces. J. Fixed Point Theory Appl. (2017). doi: 10.1007/s11784-016-0400-2
Mitrović, Z.D.: On an open problem in rectangular b-metric space. J. Anal. (2017). doi: 10.1007/s41478-017-0036-7
Suzuki, T., Alamri, B., Khan, L.A.: Some notes on fixed point theorems in $$v$$ v -generalized metric space. Bull. Kyushu Inst. Tech. Pure Appl. Math. 62, 15–23 (2015)