The BOLS-NEP theory reconciling the attributes of undercoordinated adatoms, defects, surfaces and nanostructures

Nano Materials Science - Tập 2 - Trang 333-345 - 2020
Changqing Sun1,2
1NOVITAS, School of EEE, Nanyang Technological University, Singapore, 639798, Singapore
2EBEAM, School of Materials, Yangtze Normal University, Chongqing, 408100, China

Tài liệu tham khảo

Liu, 2015, Coordination-resolved electron spectrometrics, Chem. Rev., 115, 6746, 10.1021/cr500651m Lv, 2019, Angle-resolved photoemission spectroscopy and its application to topological materials, Nature Reviews Physics, 1, 609, 10.1038/s42254-019-0088-5 Yu, 2019, High-temperature superconductivity in monolayer Bi2Sr2CaCu2O8+δ, Nature, 575, 156, 10.1038/s41586-019-1718-x Lin, 2013, Remarkable performance of Ir1/FeOx single-atom catalyst in water gas shift reaction, J. Am. Chem. Soc., 135, 15314, 10.1021/ja408574m Sun, 2007, Size dependence of nanostructures: impact of bond order deficiency, Prog. Solid State Chem., 35, 1, 10.1016/j.progsolidstchem.2006.03.001 Yu, 2018, Hall-Petch relationship in Mg alloys: a review, J. Mater. Sci. Technol., 34, 248, 10.1016/j.jmst.2017.07.022 Sun, 2009, Thermo-mechanical behavior of low-dimensional systems: the local bond average approach, Prog. Mater. Sci., 54, 179, 10.1016/j.pmatsci.2008.08.001 Guo, 2018, Grain boundary sliding and amorphization are responsible for the reverse Hall-Petch relation in superhard nanocrystalline boron carbide, Phys. Rev. Lett., 121, 145504, 10.1103/PhysRevLett.121.145504 Tian, 2013, Ultrahard nanotwinned cubic boron nitride, Nature, 493, 385, 10.1038/nature11728 Huang, 2014, Nanotwinned diamond with unprecedented hardness and stability, Nature, 510, 250, 10.1038/nature13381 Sun, 2014, vol. 108 Sun, 2001, An extended 'quantum confinement' theory: surface-coordination imperfection modifies the entire band structure of a nanosolid, J. Phys. D Appl. Phys., 34, 3470, 10.1088/0022-3727/34/24/308 Omar, 1993 Sun, 2016, vol. 113, 494 Sun, 2019, Solvation dynamics: a notion of charge injection, Springer Ser. Chem. Phys., 121, 316 Huang, 2008, Coordination-dependent surface atomic contraction in nanocrystals revealed by coherent diffraction, Nat. Mater., 7, 308, 10.1038/nmat2132 Miller, 2006, The effect of gold particle size on Au-Au bond length and reactivity toward oxygen in supported catalysts, J. Catal., 240, 222, 10.1016/j.jcat.2006.04.004 Kara, 1998, Vibrational properties of metallic nanocrystals, Phys. Rev. Lett., 81, 1453, 10.1103/PhysRevLett.81.1453 Wasserma, 1970, On determination of a lattice contraction in very small silver particles, Surf. Sci., 22 Montano, 1984, Extended x-ray-absorption fine-structure study of Ag particles isolated in solid argon, Phys. Rev. B, 30, 672, 10.1103/PhysRevB.30.672 Mays, 1968, On surface stress and surface tension.2. determination of surface stress of gold, Surf. Sci., 12, 10.1016/0039-6028(68)90119-2 Müller, 1987, Abschätzung von Eigenschaften der Materie im hochdispersen Zustand-Praktische Anwendungen des analytischen Clustermodells (ACM), Z. Phys. Chem., 268, 625 Yang, 2019, Multifield-resolved phonon spectrometrics: structured crystals and liquids, Prog. Solid State Chem., 55, 20, 10.1016/j.progsolidstchem.2019.07.001 Spanier, 2001, Size-dependent properties of CeO2-y nanoparticles as studied by Raman scattering, Phys. Rev. B, 64, 245407, 10.1103/PhysRevB.64.245407 Liu, 2017, Number-of-layer resolved (Mo, W)-(S-2, Se-2) phonon relaxation, J. Raman Spectrosc., 48, 592, 10.1002/jrs.5081 Lee, 2010, Anomalous lattice vibrations of single-and few-layer MoS2, ACS Nano, 4, 2695, 10.1021/nn1003937 Boukhicha, 2013, Anharmonic phonons in few-layer MoS 2: Raman spectroscopy of ultralow energy compression and shear modes, Phys. Rev. B, 87, 195316, 10.1103/PhysRevB.87.195316 Seong, 2003, Size-dependent Raman study of InP quantum dots, Appl. Phys. Lett., 82, 185, 10.1063/1.1535272 Dieguez, 2001, The complete Raman spectrum of nanometric SnO2 particles, J. Appl. Phys., 90, 1550, 10.1063/1.1385573 Shek, 1999, Effect of oxygen deficiency on the Raman spectra and hyperfine interactions of nanometer SnO2, Nanostructured Mater., 11, 831, 10.1016/S0965-9773(99)00373-6 Cheng, 2005, Enhanced resonant Raman scattering and electron−phonon coupling from self-assembled secondary ZnO nanoparticles, J. Phys. Chem. B, 109, 18385, 10.1021/jp0533731 Ugeda, 2010, Missing atom as a source of carbon magnetism, Phys. Rev. Lett., 104, 10.1103/PhysRevLett.104.096804 Matsui, 2005, STS observations of landau levels at graphite surfaces, Phys. Rev. Lett., 94, 226403, 10.1103/PhysRevLett.94.226403 Li, 2007, Observation of Landau levels of Dirac fermions in graphite, Nat. Phys., 3, 623, 10.1038/nphys653 Niimi, 2009, Localized distributions of quasi-two-dimensional electronic states near defects artificially created at graphite surfaces in magnetic fields, Phys. Rev. Lett., 102, 10.1103/PhysRevLett.102.026803 Enoki, 2007, Electronic structures of graphene edges and nanographene, Int. Rev. Phys. Chem., 26, 609, 10.1080/01442350701611991 Girit, 2009, Graphene at the edge: stability and dynamics, Science, 323, 1705, 10.1126/science.1166999 Hibino, 2009, Dependence of electronic properties of epitaxial few-layer graphene on the number of layers investigated by photoelectron emission microscopy, Phys. Rev. B, 79, 125431, 10.1103/PhysRevB.79.125437 Kim, 2008, Scanning photoemission Microscopy of graphene Sheets on SiO2, Adv. Mater., 20, 3589, 10.1002/adma.200800742 Mao, 2010, Tuning of C[sub 60] energy levels using orientation-controlled phthalocyanine films, J. Appl. Phys., 108, 10.1063/1.3475716 Balasubramanian, 2001, Surface-bulk core-level splitting in graphite, Phys. Rev. B, 64, 205420, 10.1103/PhysRevB.64.205420 Shulga, 2007, XPS study of fluorinated carbon multi-walled nanotubes, J. Electron. Spectrosc. Relat. Phenom., 160, 22, 10.1016/j.elspec.2007.06.002 Goldoni, 2002, X-ray photoelectron microscopy of the C 1s core level of free-standing single-wall carbon nanotube bundles, Appl. Phys. Lett., 80, 2165, 10.1063/1.1464217 Bennich, 1999, Photoemission study of K on graphite, Phys. Rev. B, 59, 8292, 10.1103/PhysRevB.59.8292 Yannoni, 1991, NMR determination of the bond lengths in C60, J. Am. Chem. Soc., 113, 3190, 10.1021/ja00008a068 Speranza, 2004, Measurement of the relative abundance of sp(2) and sp(3) hybridised atoms in carbon based materials by XPS: a critical approach. Part I, Diam. Relat. Mater., 13, 445, 10.1016/j.diamond.2003.11.077 Takabayashi, 2007, Qualitative analysis of a diamondlike carbon film by angle-resolved x-ray photoelectron spectroscopy, J. Appl. Phys., 101, 103542, 10.1063/1.2735416 Saw, 2004, The X-ray photoelectron spectroscopy C 1s diamond peak of chemical vapour deposition diamond from a sharp interfacial structure, Mater. Lett., 58, 1344, 10.1016/j.matlet.2003.09.025 Song, 2005, Elastic property of vertically aligned nanowires, Nano Lett., 5, 1954, 10.1021/nl051334v Hofler, 1990, Grain-growth in nanocrystalline TiO2 and its relation to vickers hardness and fracture-toughness, Scr. Metall. Mater., 24, 2401, 10.1016/0956-716X(90)90101-L Ma, 2003, Small-diameter silicon nanowire surfaces, Science, 299, 1874, 10.1126/science.1080313 Pan, 2002, Photoluminescence of Si nanosolids near the lower end of the size limit, J. Phys. Chem. B, 106, 11725, 10.1021/jp0266805 Roduner, 2006, Size matters: why nanomaterials are different, Chem. Soc. Rev., 35, 583, 10.1039/b502142c Wang, 2000, Single-electron tunneling study of two-dimensional gold clusters, Appl. Phys. Lett., 77, 1179, 10.1063/1.1289500 Wang, 2004, Size-dependent tunneling differential conductance spectra of crystalline Pd nanoparticles, Phys. Rev. B, 70, 205411, 10.1103/PhysRevB.70.205411 Behren, 1998, Quantum confinement in nanoscale silicon: the correlation of size with bandgap and luminescence, Solid State Commun., 105, 317, 10.1016/S0038-1098(97)10099-0 Lannoo, 1995, Screening in semiconductor nanocrystallites and its consequences for porous silicon, Phys. Rev. Lett., 74, 3415, 10.1103/PhysRevLett.74.3415 Wang, 1994, Dielectric constants of silicon quantum dots, Phys. Rev. Lett., 73, 1039, 10.1103/PhysRevLett.73.1039 Walter, 1970, Wave-vector-dependent dielectric function for Si, Ge, GaAs, and ZnSe, Phys. Rev. B, 2, 1821, 10.1103/PhysRevB.2.1821 Niimi, 2005, STM/STS measurements of two-dimensional electronic states trapped around surface defects in magnetic fields, Phys. E Low-dimens. Syst. Nanostruct., 34, 100, 10.1016/j.physe.2006.02.037 Cox, 1993, Experimental-observation of magnetism in Rhodium clusters, Phys. Rev. Lett., 71, 923, 10.1103/PhysRevLett.71.923 He, 2013, Ice-like water structure in carbon nanotube (8,8) induces cationic hydration enhancement, J. Phys. Chem. C, 117, 11412, 10.1021/jp4025206 Nakada, 1996, Edge state in graphene ribbons: nanometer size effect and edge shape dependence, Phys. Rev. B, 54, 17954, 10.1103/PhysRevB.54.17954 Stepanyuk, 2005, End electronic states in Cu chains on Cu(111): ab initio calculations, Phys. Rev. B, 72, 153407, 10.1103/PhysRevB.72.153407 Crain, 2005, End states in one-dimensional atom chains, Science, 307, 703, 10.1126/science.1106911 Fauster, 2000, Influence of surface morphology on surface states for Cu on Cu(111), Phys. Rev. B, 61, 16168, 10.1103/PhysRevB.61.16168 Eguchi, 2006, Surface states of a Pd monolayer formed on a Au(111) surface studied by angle-resolved photoemission spectroscopy, Phys. Rev. B, 74, 10.1103/PhysRevB.74.073403 Chen, 2004, The structure of catalytically active gold on titania, Science, 306, 252, 10.1126/science.1102420 Yan, 2018, Preparative microdroplet synthesis of carboxylic acids from aerobic oxidation of aldehydes, Chem. Sci., 9, 5207, 10.1039/C8SC01580E Lopez, 2004, On the origin of the catalytic activity of gold nanoparticles for low-temperature CO oxidation, J. Catal., 223, 232, 10.1016/j.jcat.2004.01.001 Dahl, 1999, Role of steps in N2 activation on Ru(0001), Phys. Rev. Lett., 83, 1814, 10.1103/PhysRevLett.83.1814 Woisetschlager, 2010, Experiments in a floating water bridge, Exp. Fluid, 48, 121, 10.1007/s00348-009-0718-2 Tong, 2003, Nitriding iron at lower temperatures, Science, 299, 686, 10.1126/science.1080216 Asscher, 1984, The remarkable surface-structure sensitivity of the ammonia-synthesis over rhenium single-crystals, Surf. Sci., 143, L389, 10.1016/0039-6028(84)90404-7 Kokalj, 2004, Engineering the reactivity of metal catalysts: a model study of methane dehydrogenation on Rh(111), J. Am. Chem. Soc., 126, 16732, 10.1021/ja045169h Fratesi, 2006, Analysis of methane-to-methanol conversion on clean and defective Rh surfaces, J. Chem. Phys., 125 Abbet, 2000, Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 <= n <= 30): one atom is enough!, J. Am. Chem. Soc., 122, 3453, 10.1021/ja9922476 Abbet, 2001, CO oxidation on a single Pd atom supported on magnesia, Phys. Rev. Lett., 86, 5950, 10.1103/PhysRevLett.86.5950 Zhang, 2002, The possibility of single C-H bond activation in CH4 on a MoO3-supported Pt catalyst: a density functional theory study, J. Chem. Phys., 116, 4281, 10.1063/1.1449942 Jakob, 2001, Interactions of adsorbates with locally strained substrate lattices, J. Chem. Phys., 114, 10075, 10.1063/1.1369161 Gsell, 1998, Effect of substrate strain on adsorption, Science, 280, 717, 10.1126/science.280.5364.717 Wintterlin, 2003, Atomic-scale evidence for an enhanced catalytic reactivity of stretched surfaces, Angew. Chem. Int. Ed., 42, 2850, 10.1002/anie.200250845 Richter, 2004, Cluster core-level binding-energy shifts: the role of lattice strain, Phys. Rev. Lett., 93, 10.1103/PhysRevLett.93.026805 Hammer, 1995, Why gold is the noblest of all the metals, Nature, 376, 238, 10.1038/376238a0 Bianchettin, 2008, Core level shifts of undercoordinated Pt atoms, J. Chem. Phys., 128, 114706, 10.1063/1.2841468 Baraldi, 2007, Highly under-coordinated atoms at Rh surfaces: interplay of strain and coordination effects on core level shift, New J. Phys., 9, 143, 10.1088/1367-2630/9/5/143 Sun, 2009, Coulomb repulsion at the nanometer-sized contact: a force driving superhydrophobicity, superfluidity, superlubricity, and supersolidity, J. Phys. Chem. C, 113, 20009, 10.1021/jp907726b Uysal, 2013, What x rays can tell us about the interfacial profile of water near hydrophobic surfaces, Phys. Rev. B, 88, 10.1103/PhysRevB.88.035431 Caputo, 2009, Wettability conversion of colloidal TiO2 nanocrystal thin films with UV-switchable hydrophilicity, Phys. Chem. Chem. Phys., 11, 3692, 10.1039/b823331d Sun, 2008, Reversible switching on superhydrophobic TiO2 nano-strawberry films fabricated at low temperature, Chem. Commun., 603, 10.1039/B715805J Cassie, 1944, Wettability of porous surfaces, Trans. Faraday Soc., 40, 546, 10.1039/tf9444000546 Cassie, 1944, Trans. Faraday Soc., 40, 546, 10.1039/tf9444000546 Lee, 2008, Structured surfaces for a giant liquid slip, Phys. Rev. Lett., 101, 10.1103/PhysRevLett.101.064501 Schoch, 2008, Transport phenomena in nanofluidics, Rev. Mod. Phys., 80, 839, 10.1103/RevModPhys.80.839 Helmy, 2005, Wetting in hydrophobic nanochannels: a challenge of classical capillarity, J. Am. Chem. Soc., 127, 12446, 10.1021/ja053267c Matsui, 2008, Atomic-layer resolved magnetic and electronic structure analysis of Ni thin film on a Cu(001) surface by diffraction spectroscopy, Phys. Rev. Lett., 100, 207201, 10.1103/PhysRevLett.100.207201 Fedorov, 1999, Temperature dependent photoemission studies of optimally doped Bi 2 Sr 2 CaCu 2 O 8, Phys. Rev. Lett., 82, 2179, 10.1103/PhysRevLett.82.2179 Sato, 2002, Low energy Excitation and Scaling in B i 2 S r 2 C a n− 1 C u n O 2 n+ 4 (n= 1–3): angle-resolved photoemission spectroscopy, Phys. Rev. Lett., 89, 10.1103/PhysRevLett.89.067005 Yang, 2019, Intermediate bosonic metallic state in the superconductor-insulator transition, Science, 10.1126/science.aax5798 Stacy, 2019 Zhang, 2019, Stabilization of the dual-aromatic cyclo-N5ˉ anion by acidic entrapment, J. Phys. Chem. Lett., 10, 2378, 10.1021/acs.jpclett.9b01047 Ma, 2012, Mesoscopic superelasticity, superplasticity, and superrigidity, Sci. China Phys. Mech. Astron., 55, 963, 10.1007/s11433-012-4662-4