The BF4 and p71 antenna mutants from Chlamydomonas reinhardtii
Tài liệu tham khảo
Ozawa, 2018, Configuration of ten light-harvesting chlorophyll a/b complex I subunits in Chlamydomonas reinhardtii photosystem I, Plant Physiol., 178, 583, 10.1104/pp.18.00749
Suga, 2019, Structure of the green algal photosystem I supercomplex with a decameric light-harvesting complex I, Nat. Plants, 5, 626, 10.1038/s41477-019-0438-4
Nawrocki, 2016, State transitions redistribute rather than dissipate energy between the two photosystems in Chlamydomonas, Nat. Plants, 2, 10.1038/nplants.2016.31
Wobbe, 2016, Multi-level light capture control in plants and green algae, Trends Plant Sci., 21, 55, 10.1016/j.tplants.2015.10.004
Dall'Osto, 2015, Biogenesis of light harvesting proteins, Biochim. Biophys. Acta Bioenerg., 1847, 861, 10.1016/j.bbabio.2015.02.009
Ziehe, 2018, Molecular mechanism of SRP-dependent light-harvesting protein transport to the thylakoid membrane in plants, Photosynth. Res., 138, 303, 10.1007/s11120-018-0544-6
Mussgnug, 2005, NAB1 is an RNA binding protein involved in the light-regulated differential expression of the light-harvesting antenna of Chlamydomonas reinhardtii, Plant Cell, 17, 3409, 10.1105/tpc.105.035774
Ouyang, 2011, LTD is a protein required for sorting light-harvesting chlorophyll-binding proteins to the chloroplast SRP pathway, Nat. Commun., 2, 277, 10.1038/ncomms1278
Jeong, 2018, Deletion of the chloroplast LTD protein impedes LHCI import and PSI–LHCI assembly in Chlamydomonas reinhardtii, J. Exp. Bot., 69, 1147, 10.1093/jxb/erx457
Richter, 2010, Component interactions, regulation and mechanisms of chloroplast signal recognition particle-dependent protein transport, Eur. J. Cell Biol., 89, 965, 10.1016/j.ejcb.2010.06.020
Kirst, 2014, The chloroplast signal recognition particle (CpSRP) pathway as a tool to minimize chlorophyll antenna size and maximize photosynthetic productivity, Biotechnol. Adv., 32, 66, 10.1016/j.biotechadv.2013.08.018
Amin, 1999, Arabidopsis mutants lacking the 43- and 54-kilodalton subunits of the chloroplast signal recognition particle have distinct phenotypes, Plant Physiol., 121, 61, 10.1104/pp.121.1.61
Hoober, 2007, Chlorophylls, ligands and assembly of light-harvesting complexes in chloroplasts, Photosynth. Res., 94, 387, 10.1007/s11120-007-9181-1
Finazzi, 2002, Involvement of state transitions in the switch between linear and cyclic electron flow in Chlamydomonas reinhardtii, EMBO Rep., 3, 280, 10.1093/embo-reports/kvf047
Li, 2006, Directing electron transfer within Photosystem I by breaking H-bonds in the cofactor branches, Proc. Natl. Acad. Sci., 103, 2144, 10.1073/pnas.0506537103
Santabarbara, 2015, Controlling electron transfer between the two cofactor chains of photosystem I by the redox state of one of their components, Biophys. J., 108, 1537, 10.1016/j.bpj.2015.01.009
de Vitry, 1984, Function of the polypeptides of the photosystem II reaction center in Chlamydomonas reinhardtii. Localization of the primary reactants, Biochim. Biophys. Acta Bioenerg., 767, 415, 10.1016/0005-2728(84)90039-2
de Vitry, 1986, Quantitation of plastoquinone-9 in photosystem II reaction center particles: chemical identification of the primary quinone, electron acceptor QA, FEBS Lett., 196, 203, 10.1016/0014-5793(86)80246-0
Olive, 1981, Ultrastructure of thylakoid membranes in C. reinhardtii: evidence for variations in the partition coefficient of the light-harvesting complex-containing particles upon membrane fracture, Arch. Biochem. Biophys., 208, 456, 10.1016/0003-9861(81)90532-4
Harris, 2009
de Vitry, 1988, Changes in phosphorylation of thylakoid membrane proteins in light-harvesting complex mutants from Chlamydomonas reinhardtii, Biochim. Biophys. Acta Bioenerg., 933, 444, 10.1016/0005-2728(88)90079-5
Li, 2004, Mutation of the putative hydrogen-bond donor to P700 of photosystem I, Biochemistry, 43, 12634, 10.1021/bi036329p
Bellafiore, 2002, Loss of Albino3 leads to the specific depletion of the light-harvesting system, Plant Cell, 14, 2303, 10.1105/tpc.003442
Kirst, 2012, Truncated photosystem chlorophyll antenna size in the green microalga Chlamydomonas reinhardtii upon deletion of the TLA3-CpSRP43 gene, Plant Physiol., 160, 2251, 10.1104/pp.112.206672
Porra, 1989, Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy, Biochim. Biophys. Acta Bioenerg., 975, 384, 10.1016/S0005-2728(89)80347-0
Chua, 1975, Thylakoid membrane polypeptides of Chlamydomonas reinhardtii: wild-type and mutant strains deficient in photosystem II reaction center, Proc. Natl. Acad. Sci. U. S. A., 72, 2175, 10.1073/pnas.72.6.2175
Fling, 1986, Peptide and protein molecular weight determination by electrophoresis using a high-molarity tris buffer system without urea, Anal. Biochem., 155, 83, 10.1016/0003-2697(86)90228-9
Piccioni, 1981, A nuclear mutant of Chlamydomonas reinhardtii defective in photosynthetic photophosphorylation, Eur. J. Biochem., 117, 93, 10.1111/j.1432-1033.1981.tb06307.x
Bonente, 2011, Analysis of LhcSR3, a protein essential for feedback de-excitation in the green alga Chlamydomonas reinhardtii, PLoS Biol., 9, 10.1371/journal.pbio.1000577
Bujaldon, 2017, Functional accumulation of antenna proteins in chlorophyll b-less mutants of Chlamydomonas reinhardtii, Mol. Plant, 10, 115, 10.1016/j.molp.2016.10.001
Takahashi, 2014, Biochemical characterization of photosystem I-associated light-harvesting complexes I and II isolated from state 2 cells of Chlamydomonas reinhardtii, Plant Cell Physiol., 55, 1437, 10.1093/pcp/pcu071
Sugimoto, 2003, Evidence that the PsbK polypeptide is associated with the photosystem II core antenna complex CP43, J. Biol. Chem., 278, 45004, 10.1074/jbc.M307537200
Johnson, 2009, A new setup for in vivo fluorescence imaging of photosynthetic activity, Photosynth. Res., 102, 85, 10.1007/s11120-009-9487-2
Wong, 2010, Enhanced structural variant and breakpoint detection using SVMerge by integration of multiple detection methods and local assembly, Genome Biol., 11, R128, 10.1186/gb-2010-11-12-r128
Qi, 2011, inGAP-sv: a novel scheme to identify and visualize structural variation from paired end mapping data, Nucleic Acids Res., 39, W567, 10.1093/nar/gkr506
Thorvaldsdóttir, 2012, Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration, Brief. Bioinform., 14, 178, 10.1093/bib/bbs017
Schneeberger, 2009, SHOREmap: simultaneous mapping and mutation identification by deep sequencing, Nat. Methods, 6, 550, 10.1038/nmeth0809-550
Béal, 1999, A new high-sensitivity 10-ns time-resolution spectrophotometric technique adapted to in vivo analysis of the photosynthetic apparatus, Rev. Sci. Instrum., 70, 202, 10.1063/1.1149566
Gross, 1988, Extensive restriction fragment length polymorphisms in a new isolate of Chlamydomonas reinhardtii, Curr. Genet., 13, 503, 10.1007/BF02427756
Wollman, 1980, Organization of the photosystem II centers and their associated antennae in the thylakoid membranes: a comparative ultrastructural, biochemical, and biophysical study of Chlamydomonas wild type and mutants lacking in photosystem II reaction centers, J. Cell Biol., 87, 728, 10.1083/jcb.87.3.728
Schmidt, 1971, Electrochromism of chlorophylls and carotenoids in multilayers and in chloroplasts, Naturwissenschaften, 58, 414, 10.1007/BF00591523
Witt, 1979, Energy conversion in the functional membrane of photosynthesis. Analysis by light pulse and electric pulse methods, Biochim. Biophys. Acta, Rev. Bioenerg., 505, 355, 10.1016/0304-4173(79)90008-9
Delepelaire, 1985, Correlations between fluorescence and phosphorylation changes in thylakoid membranes of Chlamydomonas reinhardtii in vivo: a kinetic analysis, Biochim. Biophys. Acta Bioenerg., 809, 277, 10.1016/0005-2728(85)90071-4
Wollman, 1984, Correlation between changes in light energy distribution and changes in thylakoid membrane polypeptide phosphorylation in Chlamydomonas reinhardtii, J. Cell Biol., 98, 1, 10.1083/jcb.98.1.1
Wollman, 1982, A new chlorophyll-protein complex related to photosystem I in Chlamydomonas reinhardii, Biochim. Biophys. Acta Bioenerg., 680, 352, 10.1016/0005-2728(82)90149-9
Su, 2017, Structure and assembly mechanism of plant C2S2M2-type PSII-LHCII supercomplex, Science, 357, 815, 10.1126/science.aan0327
Drop, 2014, Light-harvesting complex II (LHCII) and its supramolecular organization in Chlamydomonas reinhardtii, Biochim. Biophys. Acta Bioenerg., 1837, 63, 10.1016/j.bbabio.2013.07.012
Bergner, 2015, STATE TRANSITION7-dependent phosphorylation is modulated by changing environmental conditions, and its absence triggers remodeling of photosynthetic protein complexes, Plant Physiol., 168, 615, 10.1104/pp.15.00072
Wollman, 1988, Phosphorylation processes interacting in vivo in the thylakoid membranes from C. reinhardtii, 210
DeLille, 2000, A novel precursor recognition element facilitates posttranslational binding to the signal recognition particle in chloroplasts, Proc. Natl. Acad. Sci., 97, 1926, 10.1073/pnas.030395197
Tu, 2000, The L18 domain of light-harvesting chlorophyll proteins binds to chloroplast signal recognition particle 43, J. Biol. Chem., 275, 13187, 10.1074/jbc.C000108200
Stengel, 2008, Structural basis for specific substrate recognition by the chloroplast signal recognition particle protein cpSRP43, Science, 321, 253, 10.1126/science.1158640
Barros, 2009, Crystallisation, structure and function of plant light-harvesting Complex II, Biochim. Biophys. Acta Bioenerg., 1787, 753, 10.1016/j.bbabio.2009.03.012
Ossenbühl, 2004, Efficient assembly of photosystem II in Chlamydomonas reinhardtii requires Alb3.1p, a homolog of Arabidopsis ALBINO3, Plant Cell, 16, 1790, 10.1105/tpc.023226