The Assignment of Absolute Stereostructures through Quantum Chemical Circular Dichroism Calculations

European Journal of Organic Chemistry - Tập 2009 Số 17 - Trang 2717-2727 - 2009
Gerhard Bringmann1, Torsten Bruhn1, Katja Maksimenka1, Yasmin Hemberger1
1Institute of Organic Chemistry, University of Würzburg, Am Hubland, 97074 Würzburg, Germany, Fax: 49‐931‐888‐4755

Tóm tắt

AbstractThe determination of the absolute configuration of a chiral compound of synthetic or natural origin is a problem that every organic chemist willl certainly have to face some day. An efficient and reliable method for the assignment of absolute stereostructures, independent of empirical CD rules, is the combination of experimental circular dichroism (CD) investigations with quantum chemical CD calculations. The availability of a broad variety of quantum chemical methods and the continuing appearance of new approaches permits – but also requires – the most appropriate method to be selected in each particular case, with respect to accuracy, time consumption, and computational resources. With examples of selected chiral compounds of the most diverse structures and origins, and inclusion of several methods based on substantially different theoretical backgrounds, this review describes the basic principles and concepts of quantum chemical CD calculations for the configurational assignment of chiral compounds with stereogenic centers and/or elements of axial or planar chirality. (© Wiley‐VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2009)

Từ khóa


Tài liệu tham khảo

 

10.1046/j.1600-0773.2003.pto930502.x

10.1016/S0924-977X(02)00051-2

10.1016/S0014-2999(02)01728-4

10.1002/(SICI)1520-636X(1998)10:7<578::AID-CHIR5>3.0.CO;2-Z

10.1021/ja01480a015

 

10.1016/S0040-4020(01)96292-1

10.1021/ja00427a015

10.1021/ar50056a001

 

Harada N., 1983, Circular Dichroic Spectroscopy – Exciton Coupling in Organic Stereochemistry

Berova N., 2000, Circular Dichroism: Principles and Applications

10.1039/b515476f

 

G. Bringmann I. Kajahn M. Reichert S. E. H. Pedersen J. H. Faber T. Gulder R. Brun S. B. Christensen A. Ponte‐Sucre H. Moll G. Heubl V. Mudogo J. Org. Chem.2006 71 9348–9356 ;

10.1021/np060112p

10.1002/ejoc.200400885

10.1002/(SICI)1520-636X(2000)12:4<162::AID-CHIR2>3.0.CO;2-C

10.1021/jp0275802

Bringmann G., 1998, Natural Product Analysis: Chromatography, Spectroscopy, Biological Testing

 

10.1002/chir.10287

10.1021/ja961219

 

10.1002/chir.10145

10.1021/jp047053d

10.1021/ja980838a

10.1021/ja973690o

 

10.1002/chir.10140

10.1002/cphc.200500171

 

10.1021/ja049185q

10.1021/jo070302k

10.1002/chir.20466

 

10.1002/ejoc.200500265

10.1002/ejoc.200601128

10.1021/ja00299a024

 

10.1002/jcc.540100208

10.1002/jcc.540100209

10.1103/PhysRevB.37.785

10.1063/1.464913

10.1103/PhysRevA.38.3098

10.1016/0009-2614(93)89151-7

10.1007/BF00533485

SYBYL Tripos Inc. 1699 South Hanley Road St. Louis MO 63144 USA.

 

10.1021/ja00205a001

10.1021/ja00205a002

10.1021/ja00205a003

10.1021/ja00060a049

By default a simulation time of 500 ps is chosen. Every 0.5 ps a molecular structure is extracted from the trajectory of motion while the corresponding Newton equations are solved every 2 fs.

10.1063/1.448118

In this case the otherwise required energy weighting is achieved by the preferential occurrence of energetically more favored conformational species in the MD run.

10.1063/1.1749938

10.1063/1.1742946

10.1063/1.1671653

10.1021/ja00710a001

10.1021/cr60295a004

Usually the local field is ignored (i.e. βis equated to unity).

For recent reviews see:

Grimme S., 2004, Rev. Comput. Chem. Vol. 20

10.1007/s00214-005-0001-4

Sherrill C. D., 1999, Adv. Quant. Chem.

 

10.1063/1.1668915

10.1063/1.1669734

10.1007/BF00526540

10.1007/BF00528484

10.1007/s002149900083

10.1002/qua.560020210

Gross E. K. U., 1996, Top. Curr. Chem.

10.1021/cr0505627

10.1063/1.479866

10.1063/1.464304

10.1021/ct8001738

F. Neese ORCA– An ab initio Density Functional and Semiempirical Program Package version 2.6.04 University of Bonn Germany 2007.

10.1016/S0040-4020(01)90159-0

10.1016/S0040-4020(01)85264-9

10.1016/0040-4020(95)00528-G

10.1016/S0040-4020(96)01117-9

 

10.1016/0031-9422(95)00627-J

10.1016/S0040-4020(98)00988-0

10.1002/(SICI)1520-636X(2000)12:4<162::AID-CHIR2>3.0.CO;2-C

10.1039/a803689f

10.1002/jcc.1084

10.1021/ja003488c

10.1021/ja0373162

10.1016/j.tet.2004.08.037

 

10.1016/S0957-4166(98)00500-X

10.1016/j.tet.2003.07.009

10.1016/j.tet.2005.05.027

10.1016/j.tet.2005.01.040

10.1063/1.467146

 

10.1021/jp021671h

10.1002/qua.10559

10.1002/ejoc.200700348

10.1016/j.phytochem.2005.04.010

 

10.1039/c39740000771

10.1271/bbb1961.39.1901

10.1016/j.femsec.2004.08.002

G. Bringmann B. Ullmann J. F. Imhoff K. Radacki H. Braunschweig unpublished results.

10.1248/cpb.52.375

10.1271/bbb.63.932

10.1093/jb/mvh103

10.1039/c39750000779

Aoki T., 2006, Synlett, 677

 

10.1271/bbb1961.43.1759

10.1016/S0040-4039(00)78615-1

Bringmann G., 1995, The Alkaloids

10.1021/jo061626w

10.1016/S0031-9422(96)00357-3

10.1002/chir.20557

G. Bringmann Y. Hemberger I. Kajahn unpublished results.

10.1002/jpp.310

10.1016/0031-9422(91)80048-6

10.1039/b803784c

10.1016/S0040-4020(99)00391-9

10.1016/j.tet.2007.07.001

10.1002/chem.200700663

10.1063/1.2772854

10.1039/B615319B

10.1021/jo048631p

10.1021/np030077b

10.1002/chem.200701328

10.1002/1099-0690(200008)2000:15<2729::AID-EJOC2729>3.0.CO;2-Z

10.1002/chem.200701960

10.1021/ja064550u

10.1016/j.tet.2006.10.050

10.1002/adsc.200600570

For some further selected examples see:

10.1002/ejoc.200400336

10.1021/jo071097b

10.1002/chem.200700113

10.1021/jo070056c

10.1016/j.tet.2007.03.093

10.1016/j.tet.2007.11.015