The Arithmetic Optimization Algorithm
Tóm tắt
Từ khóa
Tài liệu tham khảo
Kumar, 2014, Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems, J. Comput. Sci., 5, 144, 10.1016/j.jocs.2013.12.001
Chao, 2020, Material and shape optimization of bi-directional functionally graded plates by giga and an improved multi-objective particle swarm optimization algorithm, Comput. Methods Appl. Mech. Engrg., 366
Zhang, 2018, Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems, Appl. Math. Model., 63, 464, 10.1016/j.apm.2018.06.036
Zhao, 2018, An adaptive multiscale approach for identifying multiple flaws based on xfem and a discrete artificial fish swarm algorithm, Comput. Methods Appl. Mech. Engrg., 339, 341, 10.1016/j.cma.2018.04.037
Abualigah, 2020, Multi-verse optimizer algorithm: A comprehensive survey of its results, variants and applications, Neural Comput. Appl., 1
de Melo, 2018, Drone squadron optimization: a novel self-adaptive algorithm for global numerical optimization, Neural Comput. Appl., 30, 3117, 10.1007/s00521-017-2881-3
Abualigah, 2020, A comprehensive survey of the grasshopper optimization algorithm: results, variants, and applications, Neural Comput. Appl., 1
Abualigah, 2020, A comprehensive survey of the harmony search algorithm in clustering applications, Appl. Sci., 10, 3827, 10.3390/app10113827
Abualigah, 2020, Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications, Neural Comput. Appl., 1
Faramarzi, 2020, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191, 10.1016/j.knosys.2019.105190
Sadollah, 2018, Mine blast harmony search: a new hybrid optimization method for improving exploration and exploitation capabilities, Appl. Soft Comput., 68, 548, 10.1016/j.asoc.2018.04.010
Gholizadeh, 2020, A new newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames, Comput. Struct., 234, 10.1016/j.compstruc.2020.106250
Kallioras, 2018, Pity beetle algorithm–a new metaheuristic inspired by the behavior of bark beetles, Adv. Eng. Softw., 121, 147, 10.1016/j.advengsoft.2018.04.007
Abualigah, 2019, Salp swarm algorithm: a comprehensive survey, Neural Comput. Appl., 1
L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated Evolution.
Storn, 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328
Hansen, 2003, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es), Evol. Comput., 11, 1, 10.1162/106365603321828970
Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 4831, 10.1016/j.cnsns.2012.05.010
Abualigah, 2020, Ant lion optimizer: A comprehensive survey of its variants and applications, Arch. Comput. Methods Eng., 10.1007/s11831-020-09420-6
Mirjalili, 2017, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163, 10.1016/j.advengsoft.2017.07.002
Cheng, 2014, Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput. Struct., 139, 98, 10.1016/j.compstruc.2014.03.007
Mirjalili, 2016, Sca: a sine cosine algorithm for solving optimization problems, Knowl.-based Syst., 96, 120, 10.1016/j.knosys.2015.12.022
Kaveh, 2013, A new optimization method: Dolphin echolocation, Adv. Eng. Softw., 59, 53, 10.1016/j.advengsoft.2013.03.004
Kirkpatrick, 1983, Optimization by simulated annealing, science, 220, 671, 10.1126/science.220.4598.671
Rashedi, 2009, Gsa: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004
Mirjalili, 2016, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 495, 10.1007/s00521-015-1870-7
Kaveh, 2010, A novel heuristic optimization method: charged system search, Acta Mech., 213, 267, 10.1007/s00707-009-0270-4
Atashpaz-Gargari, 2007, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, 4661
Rao, 2011, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43, 303, 10.1016/j.cad.2010.12.015
Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893
Habib, 1998, Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division, Opt. Laser Technol., 30, 515, 10.1016/S0030-3992(99)00004-3
Bonabeau, 1999
Eberhart, 1995, Particle swarm optimization, 1942
Simon, 2008, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12, 702, 10.1109/TEVC.2008.919004
Yang, 2014, Flower pollination algorithm: a novel approach for multiobjective optimization, Eng. Optim., 46, 1222, 10.1080/0305215X.2013.832237
Yang, 2012, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 10.1108/02644401211235834
Gandomi, 2011, Mixed variable structural optimization using firefly algorithm, Comput. Struct., 89, 2325, 10.1016/j.compstruc.2011.08.002
Gandomi, 2013, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29, 17, 10.1007/s00366-011-0241-y
Mirjalili, 2015, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-based Syst., 89, 228, 10.1016/j.knosys.2015.07.006
Deb, 2000, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Engrg., 186, 311, 10.1016/S0045-7825(99)00389-8
Xia, 2018, Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Engrg., 333, 356, 10.1016/j.cma.2018.01.035
Gandomi, 2020, Implicit constraints handling for efficient search of feasible solutions, Comput. Methods Appl. Mech. Engrg., 363, 10.1016/j.cma.2020.112917
Fesanghary, 2008, Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems, Comput. Methods Appl. Mech. Engrg., 197, 3080, 10.1016/j.cma.2008.02.006
Rao, 2019
Gholizadeh, 2009, Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel, Comput. Methods Appl. Mech. Engrg., 198, 2936, 10.1016/j.cma.2009.04.010
Sadollah, 2013, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 2592, 10.1016/j.asoc.2012.11.026
Baykasoğlu, 2015, Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems–part 2: Constrained optimization, Appl. Soft Comput., 37, 396, 10.1016/j.asoc.2015.08.052
K. Ragsdell, D. Phillips, Optimal design of a class of welded structures using geometric programming.
Deb, 1991, Optimal design of a welded beam via genetic algorithms, AIAA J., 29, 2013, 10.2514/3.10834
Lee, 2005, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Engrg., 194, 3902, 10.1016/j.cma.2004.09.007
Huang, 2007, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186, 340, 10.1016/j.amc.2006.07.105
He, 2007, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20, 89, 10.1016/j.engappai.2006.03.003
Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput. Struct., 112, 283, 10.1016/j.compstruc.2012.09.003
Mirjalili, 2016, The whale optimization algorithm, Adv. Eng. Softw., 95, 51, 10.1016/j.advengsoft.2016.01.008
Elaziz, 2017, An improved opposition-based sine cosine algorithm for global optimization, Expert Syst. Appl., 90, 484, 10.1016/j.eswa.2017.07.043
Arora, 2004
Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 113, 10.1016/S0166-3615(99)00046-9
Mahdavi, 2007, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188, 1567, 10.1016/j.amc.2006.11.033
Mezura-Montes, 2008, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37, 443, 10.1080/03081070701303470
Sandgren, 1990, Nonlinear integer and discrete programming in mechanical design optimization, J. Mech. Des., 112, 223, 10.1115/1.2912596
Liu, 2010, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10, 629, 10.1016/j.asoc.2009.08.031
He, 2007, A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization, Appl. Math. Comput., 186, 1407, 10.1016/j.amc.2006.07.134
Kaveh, 2010, An improved ant colony optimization for constrained engineering design problems, Eng. Comput., 27, 155, 10.1108/02644401011008577
Zhang, 2008, Differential evolution with dynamic stochastic selection for constrained optimization, Inform. Sci., 178, 3043, 10.1016/j.ins.2008.02.014
Tsai, 2005, Global optimization of nonlinear fractional programming problems in engineering design, Eng. Optim., 37, 399, 10.1080/03052150500066737
Ray, 2001, Engineering design optimization using a swarm with an intelligent information sharing among individuals, Eng. Optim., 33, 735, 10.1080/03052150108940941
Czerniak, 2017, Aao as a new strategy in modeling and simulation of constructional problems optimization, Simul. Model. Pract. Theory, 76, 22, 10.1016/j.simpat.2017.04.001
Guedria, 2016, Improved accelerated pso algorithm for mechanical engineering optimization problems, Appl. Soft Comput., 40, 455, 10.1016/j.asoc.2015.10.048