The Arithmetic Optimization Algorithm

Laith Abualigah1, Ali Diabat2,3, Seyedali Mirjalili4,5, Mohamed Abd Elaziz6,7, Amir H. Gandomi8
1Faculty of Computer Sciences and Informatics, Amman Arab University, 11953 Amman, Jordan
2Department of Civil and Urban Engineering, Tandon School of Engineering, New York University, Brooklyn, NY 11201, USA
3Division of Engineering, New York University Abu Dhabi, Saadiyat Island, 129188, Abu Dhabi, United Arab Emirates
4Centre for Artificial Intelligence Research and Optimisation, Torrens University Australia, Brisbane, Australia
5YFL (Yonsei Frontier Lab), Yonsei University, Seoul, Korea
6Department of Mathematics, Faculty of Science, Zagazig University, Egypt
7School of Computer Science and Technology, Wuhan University of Technology, Wuhan, China
8Faculty of Engineering and Information Technology, University of Technology Sydney, Ultimo, NSW 2007, Australia

Tóm tắt

Từ khóa


Tài liệu tham khảo

Kumar, 2014, Parameter adaptive harmony search algorithm for unimodal and multimodal optimization problems, J. Comput. Sci., 5, 144, 10.1016/j.jocs.2013.12.001

Chao, 2020, Material and shape optimization of bi-directional functionally graded plates by giga and an improved multi-objective particle swarm optimization algorithm, Comput. Methods Appl. Mech. Engrg., 366

Zhang, 2018, Queuing search algorithm: A novel metaheuristic algorithm for solving engineering optimization problems, Appl. Math. Model., 63, 464, 10.1016/j.apm.2018.06.036

Zhao, 2018, An adaptive multiscale approach for identifying multiple flaws based on xfem and a discrete artificial fish swarm algorithm, Comput. Methods Appl. Mech. Engrg., 339, 341, 10.1016/j.cma.2018.04.037

Abualigah, 2020, Multi-verse optimizer algorithm: A comprehensive survey of its results, variants and applications, Neural Comput. Appl., 1

de Melo, 2018, Drone squadron optimization: a novel self-adaptive algorithm for global numerical optimization, Neural Comput. Appl., 30, 3117, 10.1007/s00521-017-2881-3

Abualigah, 2020, A comprehensive survey of the grasshopper optimization algorithm: results, variants, and applications, Neural Comput. Appl., 1

Abualigah, 2020, A comprehensive survey of the harmony search algorithm in clustering applications, Appl. Sci., 10, 3827, 10.3390/app10113827

Abualigah, 2020, Group search optimizer: a nature-inspired meta-heuristic optimization algorithm with its results, variants, and applications, Neural Comput. Appl., 1

Faramarzi, 2020, Equilibrium optimizer: A novel optimization algorithm, Knowl.-Based Syst., 191, 10.1016/j.knosys.2019.105190

Sadollah, 2018, Mine blast harmony search: a new hybrid optimization method for improving exploration and exploitation capabilities, Appl. Soft Comput., 68, 548, 10.1016/j.asoc.2018.04.010

Gholizadeh, 2020, A new newton metaheuristic algorithm for discrete performance-based design optimization of steel moment frames, Comput. Struct., 234, 10.1016/j.compstruc.2020.106250

Kallioras, 2018, Pity beetle algorithm–a new metaheuristic inspired by the behavior of bark beetles, Adv. Eng. Softw., 121, 147, 10.1016/j.advengsoft.2018.04.007

Abualigah, 2019, Salp swarm algorithm: a comprehensive survey, Neural Comput. Appl., 1

L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence Through Simulated Evolution.

Storn, 1997, Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces, J. Glob. Optim., 11, 341, 10.1023/A:1008202821328

Hansen, 2003, Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (cma-es), Evol. Comput., 11, 1, 10.1162/106365603321828970

Gandomi, 2012, Krill herd: a new bio-inspired optimization algorithm, Commun. Nonlinear Sci. Numer. Simul., 17, 4831, 10.1016/j.cnsns.2012.05.010

Abualigah, 2020, Ant lion optimizer: A comprehensive survey of its variants and applications, Arch. Comput. Methods Eng., 10.1007/s11831-020-09420-6

Mirjalili, 2017, Salp swarm algorithm: A bio-inspired optimizer for engineering design problems, Adv. Eng. Softw., 114, 163, 10.1016/j.advengsoft.2017.07.002

Cheng, 2014, Symbiotic organisms search: a new metaheuristic optimization algorithm, Comput. Struct., 139, 98, 10.1016/j.compstruc.2014.03.007

Mirjalili, 2016, Sca: a sine cosine algorithm for solving optimization problems, Knowl.-based Syst., 96, 120, 10.1016/j.knosys.2015.12.022

Kaveh, 2013, A new optimization method: Dolphin echolocation, Adv. Eng. Softw., 59, 53, 10.1016/j.advengsoft.2013.03.004

Kirkpatrick, 1983, Optimization by simulated annealing, science, 220, 671, 10.1126/science.220.4598.671

Rashedi, 2009, Gsa: a gravitational search algorithm, Inf. Sci., 179, 2232, 10.1016/j.ins.2009.03.004

Mirjalili, 2016, Multi-verse optimizer: a nature-inspired algorithm for global optimization, Neural Comput. Appl., 27, 495, 10.1007/s00521-015-1870-7

Kaveh, 2010, A novel heuristic optimization method: charged system search, Acta Mech., 213, 267, 10.1007/s00707-009-0270-4

Atashpaz-Gargari, 2007, Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition, 4661

Rao, 2011, Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems, Comput. Aided Des., 43, 303, 10.1016/j.cad.2010.12.015

Wolpert, 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput., 1, 67, 10.1109/4235.585893

Habib, 1998, Parallel quaternary signed-digit arithmetic operations: addition, subtraction, multiplication and division, Opt. Laser Technol., 30, 515, 10.1016/S0030-3992(99)00004-3

Bonabeau, 1999

Eberhart, 1995, Particle swarm optimization, 1942

Simon, 2008, Biogeography-based optimization, IEEE Trans. Evol. Comput., 12, 702, 10.1109/TEVC.2008.919004

Yang, 2014, Flower pollination algorithm: a novel approach for multiobjective optimization, Eng. Optim., 46, 1222, 10.1080/0305215X.2013.832237

Mirjalili, 2014, Grey wolf optimizer, Adv. Eng. Softw., 69, 46, 10.1016/j.advengsoft.2013.12.007

Yang, 2012, Bat algorithm: a novel approach for global engineering optimization, Eng. Comput., 10.1108/02644401211235834

Gandomi, 2011, Mixed variable structural optimization using firefly algorithm, Comput. Struct., 89, 2325, 10.1016/j.compstruc.2011.08.002

Gandomi, 2013, Cuckoo search algorithm: a metaheuristic approach to solve structural optimization problems, Eng. Comput., 29, 17, 10.1007/s00366-011-0241-y

Mirjalili, 2015, Moth-flame optimization algorithm: A novel nature-inspired heuristic paradigm, Knowl.-based Syst., 89, 228, 10.1016/j.knosys.2015.07.006

Deb, 2000, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Engrg., 186, 311, 10.1016/S0045-7825(99)00389-8

Xia, 2018, Stress-based topology optimization using bi-directional evolutionary structural optimization method, Comput. Methods Appl. Mech. Engrg., 333, 356, 10.1016/j.cma.2018.01.035

Gandomi, 2020, Implicit constraints handling for efficient search of feasible solutions, Comput. Methods Appl. Mech. Engrg., 363, 10.1016/j.cma.2020.112917

Fesanghary, 2008, Hybridizing harmony search algorithm with sequential quadratic programming for engineering optimization problems, Comput. Methods Appl. Mech. Engrg., 197, 3080, 10.1016/j.cma.2008.02.006

Rao, 2019

Gholizadeh, 2009, Optimal design of structures subjected to time history loading by swarm intelligence and an advanced metamodel, Comput. Methods Appl. Mech. Engrg., 198, 2936, 10.1016/j.cma.2009.04.010

Sadollah, 2013, Mine blast algorithm: A new population based algorithm for solving constrained engineering optimization problems, Appl. Soft Comput., 13, 2592, 10.1016/j.asoc.2012.11.026

Baykasoğlu, 2015, Weighted superposition attraction (wsa): A swarm intelligence algorithm for optimization problems–part 2: Constrained optimization, Appl. Soft Comput., 37, 396, 10.1016/j.asoc.2015.08.052

K. Ragsdell, D. Phillips, Optimal design of a class of welded structures using geometric programming.

Deb, 1991, Optimal design of a welded beam via genetic algorithms, AIAA J., 29, 2013, 10.2514/3.10834

Lee, 2005, A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice, Comput. Methods Appl. Mech. Engrg., 194, 3902, 10.1016/j.cma.2004.09.007

Huang, 2007, An effective co-evolutionary differential evolution for constrained optimization, Appl. Math. Comput., 186, 340, 10.1016/j.amc.2006.07.105

He, 2007, An effective co-evolutionary particle swarm optimization for constrained engineering design problems, Eng. Appl. Artif. Intell., 20, 89, 10.1016/j.engappai.2006.03.003

Kaveh, 2012, A new meta-heuristic method: ray optimization, Comput. Struct., 112, 283, 10.1016/j.compstruc.2012.09.003

Mirjalili, 2016, The whale optimization algorithm, Adv. Eng. Softw., 95, 51, 10.1016/j.advengsoft.2016.01.008

Elaziz, 2017, An improved opposition-based sine cosine algorithm for global optimization, Expert Syst. Appl., 90, 484, 10.1016/j.eswa.2017.07.043

Arora, 2004

Coello, 2000, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind., 41, 113, 10.1016/S0166-3615(99)00046-9

Mahdavi, 2007, An improved harmony search algorithm for solving optimization problems, Appl. Math. Comput., 188, 1567, 10.1016/j.amc.2006.11.033

Mezura-Montes, 2008, An empirical study about the usefulness of evolution strategies to solve constrained optimization problems, Int. J. Gen. Syst., 37, 443, 10.1080/03081070701303470

Sandgren, 1990, Nonlinear integer and discrete programming in mechanical design optimization, J. Mech. Des., 112, 223, 10.1115/1.2912596

Liu, 2010, Hybridizing particle swarm optimization with differential evolution for constrained numerical and engineering optimization, Appl. Soft Comput., 10, 629, 10.1016/j.asoc.2009.08.031

He, 2007, A hybrid particle swarm optimization with a feasibility-based rule for constrained optimization, Appl. Math. Comput., 186, 1407, 10.1016/j.amc.2006.07.134

Kaveh, 2010, An improved ant colony optimization for constrained engineering design problems, Eng. Comput., 27, 155, 10.1108/02644401011008577

Zhang, 2008, Differential evolution with dynamic stochastic selection for constrained optimization, Inform. Sci., 178, 3043, 10.1016/j.ins.2008.02.014

Tsai, 2005, Global optimization of nonlinear fractional programming problems in engineering design, Eng. Optim., 37, 399, 10.1080/03052150500066737

Ray, 2001, Engineering design optimization using a swarm with an intelligent information sharing among individuals, Eng. Optim., 33, 735, 10.1080/03052150108940941

Czerniak, 2017, Aao as a new strategy in modeling and simulation of constructional problems optimization, Simul. Model. Pract. Theory, 76, 22, 10.1016/j.simpat.2017.04.001

Guedria, 2016, Improved accelerated pso algorithm for mechanical engineering optimization problems, Appl. Soft Comput., 40, 455, 10.1016/j.asoc.2015.10.048

Baykasoğlu, 2015, Adaptive firefly algorithm with chaos for mechanical design optimization problems, Appl. Soft Comput., 36, 152, 10.1016/j.asoc.2015.06.056