The Application of Clay-Based Nanocomposite Hydrogels in Wound Healing
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ruiz-Hitzky, E.; Darder, M.; Fernandes, F.M.; Wicklein, B.; Alcântara, A.C.; Aranda, P.: Fibrous clays based bionanocomposites. Prog. Polym. Sci. 38(10–11), 1392–1414 (2013)
Petrulyte, S.: Advanced textile materials and biopolymers in wound management. Dan. Med. Bull. 55(1), 72–77 (2008)
Davidson, J.R.: Current concepts in wound management and wound healing products. Vet. Clin.: Small Anim. Pract. 45(3), 537–564 (2015)
Cockbill SM, Turner TD. The development of wound management products. Krasner DL, Rodeheaver GT, Sibbald RG: Chronic wound care: a clinical source book for healthcare professionals 4th ed Malvern, PA: HMP Communications. 2007:233–48
Hadisi, Z.; Nourmohammadi, J.; Nassiri, S.M.: The antibacterial and anti-inflammatory investigation of Lawsonia Inermis-gelatin-starch nano-fibrous dressing in burn wound. Int. J. Biol. Macromol. 107, 2008–2019 (2018)
Mishra, R.; Ramasamy, K.; Lim, S.; Ismail, M.; Majeed, A.: Antimicrobial and in vitro wound healing properties of novel clay based bionanocomposite films. J. Mater. Sci. - Mater. Med. 25(8), 1925–1939 (2014)
Kalantari, K.; Mostafavi, E.; Saleh, B.; Soltantabar, P.; Webster, T.J.: Chitosan/PVA hydrogels incorporated with green synthesized cerium oxide nanoparticles for wound healing applications. Eur. Polymer J. 134, 109853 (2020)
Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B.: Skin wound healing process and new emerging technologies for skin wound care and regeneration. Pharmaceutics 12(8), 735 (2020)
Moeini, A.; Pedram, P.; Makvandi, P.; Malinconico, M.; d’Ayala, G.G.: Wound healing and antimicrobial effect of active secondary metabolites in chitosan-based wound dressings: a review. Carbohyd. Polym. 233, 115839 (2020)
Ye, S.; Jiang, L.; Wu, J.; Su, C.; Huang, C.; Liu, X., et al.: Flexible amoxicillin-grafted bacterial cellulose sponges for wound dressing: in vitro and in vivo evaluation. ACS Appl. Mater. Interfaces 10(6), 5862–5870 (2018)
Hakkarainen, T.; Koivuniemi, R.; Kosonen, M.; Escobedo-Lucea, C.; Sanz-Garcia, A.; Vuola, J., et al.: Nanofibrillar cellulose wound dressing in skin graft donor site treatment. J. Control. Release 244, 292–301 (2016)
Rosińczuk J, Taradaj J, Dymarek R, Sopel M: Mechanoregulation of wound healing and skin homeostasis. Chronic Wounds, Wound Dressings and Wound Healing.S 2021:461–77
Kamoun, E.A.; Kenawy, E.-R.S.; Chen, X.: A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J. Adv. Res. 8(3), 217–233 (2017)
Mirhoseini, M.; Kianezhad, M.A.; Rezaeipour, B.; Ghasemi, M.; Rezanejad Gatabi, Z.; Nia, H.S., et al.: The synergistic effect of topical insulin and clindamycin on acute dermal wound healing in rat model: a histological study. J. Histotechnol. 244(2), 1–10 (2021)
Cañedo-Dorantes, L.; Cañedo-Ayala, M.: Skin acute wound healing: a comprehensive review. Int. J. Inflamm. (2019). https://doi.org/10.1155/2019/3706315
Suarato, G.; Bertorelli, R.; Athanassiou, A.: Borrowing from Nature: biopolymers and biocomposites as smart wound care materials. Front. Bioeng. Biotechnol. 6, 137 (2018)
Daunton C, Kothari S, Smith L, Steele D: A history of materials and practices for wound management. Wound Practice & Research: Journal of the Australian Wound Management Association. 2012;20(4)
Winter, G.D.: Formation of the scab and the rate of epithelization of superficial wounds in the skin of the young domestic pig. Nature 193(4812), 293–294 (1962)
Moura, L.I.; Dias, A.M.; Carvalho, E.; de Sousa, H.C.: Recent advances on the development of wound dressings for diabetic foot ulcer treatment—a review. Acta Biomater. 9(7), 7093–7114 (2013)
Madaghiele, M.; Demitri, C.; Sannino, A.; Ambrosio, L.: Polymeric hydrogels for burn wound care: Advanced skin wound dressings and regenerative templates. Burns & Trauma 2(4), 2321–3868 (2014)
Ahmed, E.M.: Hydrogel: preparation, characterization, and applications: a review. J. Adv. Res. 6(2), 105–121 (2015)
Sharma, S.; Jain, P.; Tiwari, S.: Dynamic imine bond based chitosan smart hydrogel with magnified mechanical strength for controlled drug delivery. Int. J. Biol. Macromol. 160, 489–495 (2020)
Karoyo, A.H.; Wilson, L.D.: A review on the design and hydration properties of natural polymer-based hydrogels. Materials. 14(5), 1095 (2021)
Mondal, S.; Das, S.; Nandi, A.K.: A review on recent advances in polymer and peptide hydrogels. Soft Matter 16(6), 1404–1454 (2020)
Xiang, J.; Shen, L.; Hong, Y.: Status and future scope of hydrogels in wound healing: synthesis, materials and evaluation. Eur. Polymer J. 130, 109609 (2020)
Zhang, Y.; An, R.; Han, L.; Wang, X.; Shi, L.; Ran, R.: Novel self-healing, shape-memory, tunable double-layer actuators based on semi-ipn and physical double-network hydrogels. Macromol. Mater. Eng. 303(12), 1800505 (2018)
Macdougall, L.J.; Pérez-Madrigal, M.M.; Shaw, J.E.; Inam, M.; Hoyland, J.A.; O’Reilly, R., et al.: Self-healing, stretchable and robust interpenetrating network hydrogels. Biomater. Sci. 6(11), 2932–2937 (2018)
Kumari, P.V.K.; Rao, Y.S.; Akhila, S.: Role of nanocomposites in drug delivery. GSC Biol. Pharm. Sci. 8(3), 94–103 (2019)
Sharma R, Raina K. Structural and Electrical studies on ferroelectric polymer nanocomposites 2011
Gaskell, E.E.; Hamilton, A.R.: Antimicrobial clay-based materials for wound care. Future Med. Chem. 6(6), 641–655 (2014)
Williams, L.B.; Metge, D.W.; Eberl, D.D.; Harvey, R.W.; Turner, A.G.; Prapaipong, P., et al.: What makes a natural clay antibacterial? Environ. Sci. Technol. 45(8), 3768–3773 (2011)
Beal GW, Cocke D. Process and composition of a gel for wound disinfection and promotion of healing. Google Patents (2014)
Ambrogi, V.; Pietrella, D.; Nocchetti, M.; Casagrande, S.; Moretti, V.; De Marco, S., et al.: Montmorillonite–chitosan–chlorhexidine composite films with antibiofilm activity and improved cytotoxicity for wound dressing. J. Colloid Interface Sci. 491, 265–272 (2017)
Barua, S.; Chattopadhyay, P.; Aidew, L.; Buragohain, A.K.; Karak, N.: Infection-resistant hyperbranched epoxy nanocomposite as a scaffold for skin tissue regeneration. Polym. Int. 64(2), 303–311 (2015)
Sandri, G.; Bonferoni, M.C.; Ferrari, F.; Rossi, S.; Aguzzi, C.; Mori, M., et al.: Montmorillonite–chitosan–silver sulfadiazine nanocomposites for topical treatment of chronic skin lesions: In vitro biocompatibility, antibacterial efficacy and gap closure cell motility properties. Carbohyd. Polym. 102, 970–977 (2014)
Shen, M.; Li, L.; Sun, Y.; Xu, J.; Guo, X.; Prud’homme, R.K.: Rheology and adhesion of poly (acrylic acid)/ laponite nanocomposite hydrogels as biocompatible adhesives. Langmuir 30(6), 1636–1642 (2014)
Kokabi, M.; Sirousazar, M.; Hassan, Z.M.: PVA–clay nanocomposite hydrogels for wound dressing. Eur. Polymer J. 43(3), 773–781 (2007)
Shanmugapriya, K.; Kim, H.; Saravana, P.S.; Chun, B.-S.; Kang, H.W.: Fabrication of multifunctional chitosan-based nanocomposite film with rapid healing and antibacterial effect for wound management. Int. J. Biol. Macromol. 118, 1713–1725 (2018)
Noori, S.; Kokabi, M.; Hassan, Z.: Poly (vinyl alcohol)/chitosan/honey/clay responsive nanocomposite hydrogel wound dressing. J. Appl. Polym. Sci. 135(21), 46311 (2018)
Sirousazar, M.; Jahani-Javanmardi, A.; Kheiri, F.; Hassan, Z.M.: In vitro and in vivo assays on egg white/polyvinyl alcohol/clay nanocomposite hydrogel wound dressings. J. Biomater. Sci. Polym. Ed. 27(16), 1569–1583 (2016)
Han, L.; Lu, X.; Liu, K.; Wang, K.; Fang, L.; Weng, L.-T., et al.: Mussel-inspired adhesive and tough hydrogel based on nanoclay confined dopamine polymerization. ACS Nano 11(3), 2561–2574 (2017)
Perioli, L.; Dorigato, A.; Pagano, C.; Leoni, M.; Pegoretti, A.: Thermo-mechanical and adhesive properties of polymeric films based on ZnAl-hydrotalcite composites for active wound dressings. Polym. Eng. Sci. 59(S1), E112–E119 (2019)
Zou, Q.; Cai, B.; Li, J.; Li, J.; Li, Y.: In vitro and in vivo evaluation of the chitosan/Tur composite film for wound healing applications. J. Biomater. Sci. Polym. Ed. 28(7), 601–615 (2017)
Wang, W Wang, A Nanoscale clay minerals for functional ecomaterials: fabrication, applications, and future trends. In: Handbook of Ecomaterials, pp. 1-82, Springer, (2019)
Massaro, M.; Colletti, C.G.; Lazzara, G.; Riela, S.: The use of some clay minerals as natural resources for drug carrier applications. J. Funct. Biomater. 9(4), 58 (2018)
Sposito, G.; Skipper, N.T.; Sutton, R.; Park, S.-h; Soper, A.K.; Greathouse, J.A.: Surface geochemistry of the clay minerals. Proc. Nat. Acad. Sci. 96(7), 3358–3364 (1999)
Schaef, H.T.; Loganathan, N.; Bowers, G.M.; Kirkpatrick, R.J.; Yazaydin, A.O.; Burton, S.D., et al.: Tipping point for expansion of layered aluminosilicates in weakly polar solvents: supercritical CO2. ACS Appl. Mater. Interfaces 9(42), 36783–36791 (2017)
Vaiana CA: Bio-Functionalized Clay Nanoparticles for Wound Healing Applications: Wright State University (2011)
Tamer, T.M.; Sabet, M.M.; Omer, A.M.; Abbas, E.; Eid, A.I.; Mohy-Eldin, M.S., et al.: Hemostatic and antibacterial PVA/Kaolin composite sponges loaded with penicillin–streptomycin for wound dressing applications. Sci. Rep. 11(1), 1–15 (2021)
Liu, M.; Shen, Y.; Ao, P.; Dai, L.; Liu, Z.; Zhou, C.: The improvement of hemostatic and wound healing property of chitosan by halloysite nanotubes. RSC Adv. 4(45), 23540–23553 (2014)
Pereira, A.G.; Rodrigues, F.H.; Paulino, A.T.; Martins, A.F.; Fajardo, A.R.: Recent advances on composite hydrogels designed for the remediation of dye-contaminated water and wastewater: a review. J. Clean. Prod. 284, 124 (2020)
Iliescu, R.I.; Andronescu, E.; Voicu, G.; Ficai, A.; Covaliu, C.I.: Hybrid materials based on montmorillonite and citostatic drugs: preparation and characterization. Appl. Clay Sci. 52(1–2), 62–68 (2011)
Suresh, R.; Borkar, S.; Sawant, V.; Shende, V.; Dimble, S.: Nanoclay drug delivery system. Int. J. Pharm. Sci. Nanotechnol. 3(2), 901–906 (2010)
Dabbaghianamiri M: Polymer/cay Nanocomposite Self-assembly for Gas Barrier Films Application: Texas State University (2017)
Ahmad, N.H.; Mohamed, M.A.; Yusoff, S.F.M.: Improved adsorption performance of rubber-based hydrogel: optimisation through response surface methodology, isotherm, and kinetic studies. J. Sol-Gel Sci. Technol. 94(2), 322–334 (2020)
Khan, S.A.; Khan, T.A.: Clay-hydrogel nanocomposites for adsorptive amputation of contaminants from aqueous phase: a review. J. Environ. Chem. Eng. 9, 105 (2021)
Gaharwar, A.K.; Kishore, V.; Rivera, C.; Bullock, W.; Wu, C.J.; Akkus, O., et al.: Physically crosslinked nanocomposites from silicate-crosslinked PEO: mechanical properties and osteogenic differentiation of human mesenchymal stem cells. Macromol. Biosci. 12(6), 779–793 (2012)
Zhao, L.Z.; Zhou, C.H.; Wang, J.; Tong, D.S.; Yu, W.H.; Wang, H.: Recent advances in clay mineral-containing nanocomposite hydrogels. Soft Matter 11(48), 9229–9246 (2015)
Tavakoli, J.; Gascooke, J.; Xie, N.; Tang, B.Z.; Tang, Y.: Enlightening freeze–thaw process of physically cross-linked poly (vinyl alcohol) hydrogels by aggregation-induced emission fluorogens. ACS Appl. Polym. Mater. 1(6), 1390–1398 (2019)
Ibrahim, S.M.; El-Naggar, A.A.: Preparation of poly (vinyl alcohol)/clay hydrogel through freezing and thawing followed by electron beam irradiation for the treatment of wastewater. J. Thermoplast. Compos. Mater. 26(10), 1332–1348 (2013)
Wang, Y.; Qi, Y.; Chen, C.; Zhao, C.; Ma, Y.; Yang, W.: Layered Co-Immobilization of β-Glucosidase and Cellulase on Polymer Film by Visible-Light-Induced Graft Polymerization. ACS Appl. Mater. Interfaces. 11(47), 44913–44921 (2019)
Li, B.; Zhang, Y.; Wu, C.; Guo, B.; Luo, Z.: Fabrication of mechanically tough and self-recoverable nanocomposite hydrogels from polyacrylamide grafted cellulose nanocrystal and poly (acrylic acid). Carbohyd. Polym. 198, 1–8 (2018)
Sharma, G.; Thakur, B.; Naushad, M.; Kumar, A.; Stadler, F.J.; Alfadul, S.M., et al.: Applications of nanocomposite hydrogels for biomedical engineering and environmental protection. Environ. Chem. Lett. 16(1), 113–146 (2018)
Ninan, N.; Muthiah, M.; Park, I.-K.; Wong, T.W.; Thomas, S.; Grohens, Y.: Natural polymer/inorganic material based hybrid scaffolds for skin wound healing. Polym. Rev. 55(3), 453–490 (2015)
Kim, Y.S.; Liu, M.; Ishida, Y.; Ebina, Y.; Osada, M.; Sasaki, T., et al.: Thermoresponsive actuation enabled by permittivity switching in an electrostatically anisotropic hydrogel. Nat. Mater. 14(10), 1002–1007 (2015)