Hoạt Động Chống Oxy Hóa và Ức Chế Enzyme Của Chiết Xuất Vỏ Cây Thông Balsam (Abies balsamea (L.) Mill.) và Dầu Chưng Cất

Waste and Biomass Valorization - Tập 10 - Trang 3295-3306 - 2019
Zhiling Wang1,2, Luis A. Cáceres2,3, Mohammad M. Hossain2,4, Saoussen Ben Abdallah2,5, Osariemen Ogbeide4, Zengyu Yao2,6, Justin B. Renaud2, Ian M. Scott2
1College of Forestry, Shanxi Agriculture University, Taigu, China
2London Research and Development Centre, Agriculture and Agri-Food Canada, London, Canada
3Departments of Biochemistry and Chemistry, University of Western Ontario, London, Canada
4Department of Chemical and Biochemical Engineering, University of Western Ontario, London, Canada
5Faculté des Sciences de Tunis, Unité de Physiologie et Biochimie de la Réponse des Plantes aux Contraintes Abiotiques, Tunis El Manar, Tunisia
6Key Laboratory of Forest Resources Conservation and Utilization in the Southwest Mountains of China (Southwest Forestry University), Ministry of Education, Kunming, China

Tóm tắt

Chất thải gỗ từ các hoạt động lâm nghiệp cung cấp một nguồn sinh khối giá rẻ có thể được chuyển đổi thành năng lượng sinh học, nhiên liệu và hóa chất gia tăng giá trị. Vỏ cây thông Balsam (Abies balsamea (L.) Mill.) cung cấp nguồn sản phẩm tự nhiên sinh học hoạt tính, chẳng hạn như lignans, được chiết xuất qua quy trình chiết bằng dung môi (SE). Mục tiêu của nghiên cứu này là: (1) so sánh quy trình chiết bằng dung môi truyền thống với quy trình chiết bằng chất lỏng siêu tới hạn (SFE) và chưng cất chậm để tách và chuyển đổi hóa chất từ vỏ cây, và (2) đánh giá hoạt tính sinh học của các chiết xuất và dầu chưng cất. Các xét nghiệm sinh hóa trong ống nghiệm đã được sử dụng để đo lường khả năng chống oxy hóa và khả năng quét gốc oxy tự do, và sự ức chế của men glutathione S-transferase và esterase. Dầu chưng cất có khả năng chống oxy hóa, khả năng quét gốc tự do và hoạt tính ức chế enzyme tương tự như các chiết xuất từ SE và SFE. Phân đoạn và sắc ký khối lượng đã xác định catechol và p-coumaryl alcohol trong pha hữu cơ của dầu chưng cất. Các hợp chất phenolic nhỏ được xác định cung cấp nguyên liệu đầu vào cho ứng dụng dược phẩm hoặc làm chất xúc tác cho thuốc trừ sâu.

Từ khóa

#bark extracts #pyrolisis oil #antioxidant activity #enzyme inhibition #bioactive compounds #lignans

Tài liệu tham khảo

Fraser, M.H., Cuerrier, A., Haddad, P.S., Arnason, J.T., Owen, P.L., Johns, T.: Medicinal plants of Cree communities (Québec, Canada): anztioxidant activity of plants used to treat type 2 diabetes symptoms. Can. J. Physiol. Pharmacol. 85(11), 1200–1214 (2007) Waye, A., Annal, M., Tang, A., Picard, G., Harnois, F., Guerrero-Analco, J.A., Saleem, A., Hewitt, L.M., Milestone, C.B., MacLatchy, D.L., Trudeau, V.L., Arnason, J.T.: Canadian boreal pulp and paper feedstocks contain neuroactive substances that interact in vitro with GABA and dopaminergic systems in the brain. Sci. Total Environ. 468, 315–325 (2014) Wang, Z., Zhao, Z., Abou-Zaid, M.M., Arnason, J.T., Liu, R., Walshe-Roussel, B., Waye, A., Liu, S., Saleem, A., Cáceres, L.A., Wei, Q., Scott, I.M.: Inhibition of insect glutathione S-transferase (GST) by conifer extracts. Arch. Insect Biochem. Physiol 87(4), 234–249 (2014) Wang, Z., Zhao, Z., Cheng, X., Liu, S., Wei, Q., Scott: I. M. Conifer flavonoid compounds inhibit detoxification enzymes and synergize insecticides. Pestic. Biochem. Physiol. 127, 1–7 (2016) Hossain, M.M., Scott, I.M., McGarvey, B.D., Conn, K., Ferrante, L., Berruti, F., Briens, C.: Insecticidal and anti-microbial activity of bio-oil derived from fast pyrolysis of lignin, cellulose, and hemicellulose. J. Pest Sci. 88(1), 171–179 (2015) Mullen, C.A., Boateng, A.A.: Chemical composition of bio-oils produced by fast pyrolysis of two energy crops. Energy Fuels 22(3), 2104–2109 (2008) Booker, C.J., Bedmutha, R., Vogel, T., Gloor, A., Xu, R., Ferrante, L., Yeung, K.K.C., Scott, I.M., Conn, K.L., Berruti, F., Briens, C.: Experimental investigations into the insecticidal, fungicidal, and bactericidal properties of pyrolysis oil from tobacco leaves using a fluidized bed pilot plant. Ind. Eng. Chem. Res. 49(20), 10074–10079 (2010) Liu, S., Caceres, L., Schieck, K., Booker, C.J., McGarvey, B.M., Yeung, K.K.C., Pariente, S., Briens, C., Berruti, F., Scott, I.M.: Insecticidal activity of bio-oil from the pyrolysis of straw from brassica spp. J. Agric. Food Chem. 62(16), 3610–3618 (2014) Karaosmanoglu, H., Soyer, F., Ozen, B., Tokatli, F.: Antimicrobial and antioxidant activities of Turkish extra virgin olive oils. J. Agric. Food Chem. 58(14), 8238–8245 (2010) Burri, J., Graf, M., Lambelet, P., Loliger, J.: Vanillin: more than a flavouring agent—a potent antioxidant. J. Sci. Food Agric. 48(1), 49–56 (2010) Cooper, R.A.: Inhibition of biofilms by glucose oxidase, lactoperoxidase and guaiacol: the active antibacterial component in an enzyme alginogel. Int. Wound J. 10(6), 630–637 (2013) Ogata, M., Hoshi, M., Shimotohno, K., Urano, S., Endo, T.: Antioxidant activity of magnolol, honokiol, and related phenolic compounds. J. Am. Oil Chem. Soc. 74(5), 557–562 (1997) Zhang, W.B., Mai, K.S., Xu, W., Liufu, Z.G., Tan, B.P.: Dietary guaiacol improves the growth of juvenile abalone, Haliotis discus hannai Ino. Chin. J. Oceanol. Limnol. 27(4), 697–702 (2009) Venderbosch, R.H., Prins, W.: Fast pyrolysis technology development. Biofuel Bioprod. Biorefin. 4(2), 178–208 (2010) Papari, S., Hawboldt, K.: A review on the pyrolysis of woody biomass to bio-oil: focus on kinetic models. Renew. Sustain. Energy Rev. 52, 1580–1595 (2015) Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Optimizing pyrolysis reactor operating conditions to increase nicotine recovery from tobacco leaves. J. Anal. Appl. Pyrolysis 112, 80–87 (2015) Bajerová, P., Adam, M., Bajer, T., Ventura, K.: Comparison of various techniques for the extraction and determination of antioxidants in plants. J. Sep. Sci. 37(7), 835–844 (2014) Dewanto, V., Wu, X.Z., Adom, K.K., Liu, R.H.: Thermal processing enhances the nutritional value of tomatoes by increasing total antioxidant activity. J. Agric. Food Chem. 50(10), 3010–3014 (2002) Bhat, F.M., Riar, C.S.: Extraction, identification and assessment of antioxidative compounds of bran extracts of traditional rice cultivars: an analytical approach. Food Chem. 237, 264 (2017) Hatano, T., Kagawa, H., Yasuhara, T., Okuda, T.: Two new flavonoids and other constituents in licorice root: their relative astringency and radical scavenging effects. Chem. Pharm. Bull. 36(6), 2090–2097 (1988) Kim, D.O., Jeong, S.W., Lee, C.Y.: Antioxidant capacity of phenolic phytochemicals from various cultivars of plums. Food Chem. 81(3), 321–326 (2003) Sun, B., Ricardo-da-Silva, J.M., Spranger, I.: Critical factors of vanillin assay for catechins and proanthocyanidins. J. Agric. Food Chem. 46(10), 4267–4274 (1998) Suzuki, T., Doi, S., Yamakawa, M., Yamamoto, K., Watanabe, T., Funaki, M.: Recovery of wood preservatives from wood pyrolysis tar by solvent extraction. Holzforschung 51(3), 214–218 (1997) Oehr, K.H., Mckinely, J. Glyoxal production from biomass pyrolysis derived hydroxy-acetaldehyde. In: Bridgwater, A.V. (ed) Advances in thermochemical biomass conversion, p. 1452. Blackie Academic & Professional, London (1994) Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Application of novel pyrolysis reactor technology to concentrate bio-oil components with antioxidant activity from tobacco, tomato and coffee ground biomass. Waste Biomass Valoriz. 9(9), 1607–1617 (2018) Hossain, M.M., Scott, I.M., Berruti, F., Briens, C.: Application of 1D and 2D MFR reactor technology for the isolation of insecticidal and anti-microbial properties from pyrolysis bio-oils. J. Environ. Sci. Health 51(12), 860–867 (2016) Kim, J.W., Lee, H.W., Lee, I.G., Jeon, J.K., Ryu, C., Park, S.H., Jung, S.C., Park, Y.K.: Influence of reaction conditions on bio-oil production from pyrolysis of construction waste wood. Renew. Energy 65(66), 41–48 (2014) Li, D., Berruti, F., Briens, C.: Autothermal fast pyrolysis of birch bark with partial oxidation in a fluidized bed reactor. Fuel 121(4), 27–38 (2014) Fagernas, L., Kuoppala, E., Tiilikkala, K., Oasmaa, A.: Chemical composition of birch wood slow pyrolysis products. Energy Fuels 26(2), 1275–1283 (2012) Patra, J.K., Kim, S.H., Hwang, H., Choi, J.W., Baek, K.-H.: Volatile compounds and antioxidant capacity of the bio-oil obtained by pyrolysis of Japanese red pine (pinus densiflora siebold and zucc.). Molecules 20(3), 3986–4006 (2015) Rasouli, H., Hosseini-Ghazvini, S.M., Adibi, H., Khodarahmi, R.: Differential α-amylase/α-glucosidase inhibitory activities of plant-derived phenolic compounds: a virtual screening perspective for the treatment of obesity and diabetes. Food Funct. 8(5), 1942–1954 (2017) Adandonon, A., Regnier, T., Aveling, T.A.: Phenolic content as an indicator of tolerance of cowpea seedlings to Sclerotium rolfsii. Eur. J. Plant Pathol 149(2), 245–251 (2017) Liu, S.Q., Scott, I.M., Pelletier, Y., Kramp, K., Durst, T., Sims, S.R., Arnason, J.T.: Dillapiol: a pyrethrum synergist for control of the Colorado potato beetle. J. Econ. Entomol 107(2), 797–805 (2014) Wang, J.J., Wei, D., Dou, W., Hu, F., Liu, W.F., Wang, J.J.: Toxicities and synergistic effects of several insecticides against the oriental fruit fly (Diptera: Tephritidae). J. Econ. Entomol 106(2), 970–978 (2013) Patathananone, S., Thammasirirak, S., Daduang, J., Gung, C.J., Temsiripong, Y., Daduang, S.: Inhibition of hela cells metastasis by bioactive compounds in crocodile (Crocodylus siamensis) white blood cells extract. Environ. Toxicol. 31(11), 1329–1336 (2016) Zhang, M., Fang, T., Pu, G., Sun, X., Zhou, X., Cai, Q.: Xenobiotic metabolism of plant secondary compounds in the English grain aphid, Sitobion avenae (F.) (Hemiptera: Aphididae). Pestic. Biochem. Physiol. 107(1), 44–49 (2013) Sukhirun, N., Pluempanupat, W., Bullangpoti, V., Koul, O.: Bioefficacy of Alpinia galanga (Zingiberaceae) rhizome extracts, (E)-p-acetoxycinnamyl alcohol, and (E)-p-coumaryl alcohol ethyl ether against Bactrocera dorsalis (Diptera: Tephritidae) and the impact on detoxification enzyme activities. J. Econ. Entomol 104(5), 1534–1540 (2011) Xu, L.Q., Pranantyo, D., Neoh, K.G., Kang, E.T., Teo, S.L.M., Fu, G.D.: Synthesis of catechol and zwitterion-bifunctionalized poly(ethylene glycol) for the construction of antifouling surfaces. Polym. Chem. 7(2), 493–501 (2016) Ali, A., Bansal, D., Kaushik, N.K., Kaushik, N., Choi, E.H., Gupta, R.: Syntheses, characterization, and anti-cancer activities of pyridine-amide based compounds containing appended phenol or catechol groups. J. Chem. Sci. 126(4), 1091–1105 (2014)