Phân loại đại số và hình học của đại số hai giao hoán nilpotent

Algebras and Representation Theory - Tập 23 - Trang 2331-2347 - 2020
Pilar Páez-Guillán1, Vasily Voronin2, Ivan Kaygorodov3
1University of Santiago de Compostela, Santiago de Compostela, Spain
2Novosibirsk State University, Novosibirsk, Russia
3CMCC, Universidade Federal do ABC, Santo André, Brazil

Tóm tắt

Chúng tôi phân loại các đại số hai giao hoán nilpotent bậc 4 phức tạp từ cả hai phương diện đại số và hình học.

Từ khóa

#nilpotent #đại số hai giao hoán #đại số bậc 4 #phân loại #hình học #đại số

Tài liệu tham khảo

Abdelwahab, H., Calderón, A.J., Kaygorodov, I.: The algebraic and geometric classification of nilpotent binary Lie algebras. Int. J. Algebra Comput. 29(6), 1113–1129 (2019) Adashev, J., Camacho, L., Omirov, B.: Central extensions of null-filiform and naturally graded filiform non-Lie Leibniz algebras. J. Algebra 479, 461–486 (2017) Alvarez, M.A., Hernández, I., Kaygorodov, I.: Degenerations of Jordan superalgebras. Bull. Malaysian Math. Sci. Soc. 42(6), 3289–3301 (2019) Beneš, T., Burde, D.: Degenerations of pre-Lie algebras. J. Math. Phys. 50, 11, 112102 (2009). 9 pp Beneš, T., Burde, D.: Classification of orbit closures in the variety of three-dimensional Novikov algebras. J. Algebra Appl. 13, 2, 1350081 (2014). 33 pp Burde, D., Dekimpe, K., Deschamps, S.: LR-algebras, new developments in Lie theory and geometry. Amer. Math. Soc. Providence Contemp. Math. 491, 125–140 (2009) Burde, D., Dekimpe, K., Vercammen, K.: Complete LR-structures on solvable Lie algebras. J. Group Theory 13(5), 703–719 (2010) Burde, D., Steinhoff, C.: Classification of orbit closures of 4–dimensional complex Lie algebras. J. Algebra 214(2), 729–739 (1999) Cayley, A.: On the theory of analytical forms called trees. Phil. Mag. 13, 19–30 (1857). Collected Math. Papers, University Press, Cambridge, 3(1890), 242–246 Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of n-dimensional anticommutative algebras with (n − 3)-dimensional annihilator. Commun.in Algebra 47(1), 173–181 (2019) Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of 2-dimensional rigid algebras. Linear and Multilinear Algebra. https://doi.org/10.1080/03081087.2018.1519009 (2018) Calderón Martín, A., Fernández Ouaridi, A., Kaygorodov, I.: The classification of bilinear maps withradical of codimension 2, arXiv:1806.07009 Camacho, L., Kaygorodov, I., Lopatkin, V., Salim, M.: The variety of dual mock-Lie algebras. Communications in Mathematics, to appear, arXiv:1910.01484 Casas, J., Khudoyberdiyev, A., Ladra, M., Omirov, B.: On the degenerations of solvable Leibniz algebras. Linear Algebra Appl. 439(2), 472–487 (2013) Cicalò, S., De Graaf, W., Schneider, C.: Six-dimensional nilpotent Lie algebras. Linear Algebra Appl. 436(1), 163–189 (2012) Darijani, I., Usefi, H.: The classification of 5-dimensional p-nilpotent restricted Lie algebras over perfect fields, I. J. Algebra 464, 97–140 (2016) De Graaf, W.: Classification of 6-dimensional nilpotent Lie algebras over fields of characteristic not 2. J. Algebra 309(2), 640–653 (2007) De Graaf, W.: Classification of nilpotent associative algebras of small dimension. Int. J. Algebra Comput. 28(1), 133–161 (2018) Demir, I., Misra, K., Stitzinger, E.: On classification of four-dimensional nilpotent Leibniz algebras. Commun. Algebra 45(3), 1012–1018 (2017) Drensky, V., Zhakhayev, B.: Noetherianity and Specht problem for varieties of bicommutative algebras. J. Algebra 499(1), 570–582 (2018) Drensky, V.: Varieties of bicommutative algebras, arXiv:1706.04279 Dzhumadildaev, A., Tulenbaev, K.: Bicommutative algebras. Russ. Math. Surv. 58(6), 1196–1197 (2003) Dzhumadildaev, A., Ismailov, N., Tulenbaev, K.: Free bicommutative algebras. Serdica Math. J. 37(1), 25–44 (2011) Dzhumadildaev, A., Ismailov, N.: Polynomial identities of bicommutative algebras, Lie and Jordan elements. Commun. Algebra 46(12), 5241–5251 (2018) Fernández Ouaridi, A., Kaygorodov, I., Khrypchenko, M., Volkov, Yu.: Degenerations of nilpotent algebras, arXiv:1905.05361 Gorshkov, I., Kaygorodov, I., Kytmanov, A., Salim, M.: The variety of nilpotent Tortkara algebras. J. Siberian Federal Univ. Math. Phys. 12(2), 173–184 (2019) Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The algebraic classification of nilpotent Tortkara algebras, arXiv:1904.00845 Gorshkov, I., Kaygorodov, I., Khrypchenko, M.: The geometric classification of nilpotent Tortkara algebras. journal=Communications in Algebra 48(1), 204–209 (2020) Grunewald, F., O’Halloran, J.: Varieties of nilpotent Lie algebras of dimension less than six. J. Algebra 112, 315–325 (1988) Grunewald, F., O’Halloran, J.: A Characterization of orbit closure and applications. J. Algebra 116, 163–175 (1988) Hegazi, A., Abdelwahab, H.: Classification of five-dimensional nilpotent Jordan algebras. Linear Algebra Appl. 494, 165–218 (2016) Hegazi, A., Abdelwahab, H.: The classification of n-dimensional non-associative Jordan algebras with (n − 3)-dimensional annihilator. Commun. Algebra 46(2), 629–643 (2018) Hegazi, A., Abdelwahab, H., Calderón Martín, A.: The classification of n-dimensional non-Lie Malcev algebras with (n − 4)-dimensional annihilator. Linear Algebra Appl. 505, 32–56 (2016) Hegazi, A., Abdelwahab, H., Calderón Martín, A.: Classification of nilpotent Malcev algebras of small dimensions over arbitrary fields of characteristic not 2. Algebras Represent Theory 21(1), 19–45 (2018) Ismailov, N., Kaygorodov, I., Mashurov, F.: The algebraic and geometric classification of nilpotent assosymmetric algebras. Algebras and Representation Theory. https://doi.org/10.1007/s10468-019-09935-y (2019) Ismailov, N., Kaygorodov, I., Volkov, Yu: The geometric classification of Leibniz algebras. Int. J. Math. 29, 5, 1850035 (2018) Ismailov, N., Kaygorodov, I., Volkov, Yu: Degenerations of Leibniz and anticommutative algebras. Can. Math. Bull. 62(3), 539–549 (2019) Jumaniyozov, D., Kaygorodov, I., Khudoyberdiev, A.: The algebraic and geometric classification of nilpotent noncommutative Jordan algebras, arXiv:1912.02691 Karimjanov, I., Kaygorodov, I., Khudoyberdiyev, K.: The algebraic and geometric classification of nilpotent Novikov algebras. J. Geom. Phys. 143, 11–21 (2019) Karimjanov, I., Kaygorodov, I., Ladra, M.: Central extensions of filiform associative algebras. Linear and Multilinear Algebra. https://doi.org/10.1080/03081087.2019.1620674 (2019) Kaygorodov, I., Khrypchenko, M., Popov, Yu.: The algebraic and geometric classification of nilpotent terminal algebras. arXiv:1909.00358 Kaygorodov, I., Lopes, S., Popov, Yu.: Degenerations of nilpotent associative commutative algebras. Communications in Algebra. https://doi.org/10.1080/00927872.2019.1691581 (2019) Kaygorodov, I., Popov, Yu., Pozhidaev, A., Volkov, Yu.: Degenerations of Zinbiel and nilpotent Leibniz algebras. Linear Multilinear Algebra 66(4), 704–716 (2018) Kaygorodov, I., Popov, Yu., Volkov, Yu.: Degenerations of binary-Lie and nilpotent Malcev algebras. Commun. Algebra 46(11), 4929–4941 (2018) Kaygorodov, I., Volkov, Yu: The variety of 2-dimensional algebras over an algebraically closed field. Can. J. Math. 71(4), 819–842 (2019) Kaygorodov, I., Volkov, Yu: Complete classification of algebras of level two. Moscow Math. J. 19(3), 485–521 (2019) Kaygorodov, I., Volkov, Yu.: Degenerations of Filippov algebras, arXiv:1911.00358 Seeley, C.: Degenerations of 6-dimensional nilpotent Lie algebras over \(\mathbb {C}\). Commun. Algebra 18, 3493–3505 (1990) Skjelbred, T., Sund, T.: Sur la classification des algebres de Lie nilpotentes. C. R. Acad. Sci. Paris Ser. A-B 286(5), A241–A242 (1978) Zusmanovich, P.: Central extensions of current algebras. Trans. Am. Math. Soc. 334(1), 143–152 (1992)