The Adaptive Parameter Control Method and Linear Vector Optimization

Vietnam Journal of Mathematics - Tập 43 - Trang 471-486 - 2015
Nguyen Thi Thu Huong1, Nguyen Dong Yen2
1Department of Information Technology, Le Qui Don University, Hanoi, Vietnam
2Institute of Mathematics, Vietnam Academy of Science and Technology, Hanoi, Vietnam

Tóm tắt

The question of constructing a set of equidistant points, with a given small approximate distance, in the efficient and weakly efficient frontiers of a linear vector optimization problem of a general form, is considered in this paper. It is shown that the question can be solved by combining Pascoletti–Serafini’s scalarization method (1984) and Eichfelder’s adaptive parameter control method (2009) with a sensitivity analysis formula in linear programming, which was obtained by J. Gauvin (2001). Our investigation shows that one can avoid the strong second-order sufficient condition used by G. Eichfelder, which cannot be imposed on linear vector optimization problems.

Tài liệu tham khảo

Benson, H.P.: An outer approximation algorithm for generating all efficient extreme points in the outcome set of a multiple objective linear programming problem. J. Global. Optim. 13, 1–24 (1998) Benson, H. P.: Hybrid approach for solving multiple-objective linear programs in outcome space. J. Optim. Theory. Appl. 98, 17–35 (1998) Eichfelder, G.: Adaptive Scalarization Methods in Multiobjective Optimization. Springer-Verlag, Berlin (2008) Eichfelder, G.: An adaptive scalarization method in multiobjective optimization. SIAM J. Optim. 19, 1694–1718 (2009) Eichfelder, G.: Scalarizations for adaptively solving multi-objective optimization problems. Comput. Optim. Appl. 44, 249–273 (2009) Eichfelder, G.: Multiobjective bilevel optimization. Math. Program., Ser. A 123, 419–449 (2010) Gauvin, J.: Formulae for the sensitivity analysis of linear programming problems. In: Lassonde, M (ed.) Approximation, Optimization, Economics, Mathematical, pp 117–120. Physica-Verlag, Heidelberg (2001) Gerstewitz, Chr. [Tammer, Chr.]: Nichtkonvexe Dualitat in der Vektoroptimierung. (German) [Nonconvex duality in vector optimization] Wiss. Z. Tech. Hochsch. Leuna-Merseburg 25, 357–364 (1983) Hamel, A.H.: Translative sets and functions and their applications to risk measure theory and nonlinear separation. http://carma.newcastle.edu.au/jon/Preprints/Books/CUP/CUPold/acrm.pdf Helbig, S.: An interactive algorithm for nonlinear vector optimization. Appl. Math. Optim. 22, 147–151 (1990) Helbig, S.: An algorithm for quadratic vector optimization problems. Z. Angew. Math. Mech. 70, T751—T753 (1990) Helbig, S.: On a constructive approximation of the efficient outcomes in bicriterion vector optimization. J. Global Optim. 5, 35–48 (1994) Hoa, T.N., Huy, N.Q., Phuong, T.D., Yen, N.D.: Unbounded components in the solution sets of strictly quasiconcave vector maximization problems. J. Global Optim. 37, 1–10 (2007) Huong, N.T.T., Yen, N.D.: The Pascoletti–Serafini scalarization scheme and linear vector optimization. J. Optim. Theory Appl. 162, 559–576 (2014) Ioffe, A.D., Tihomirov, V.M.: Theory of Extremal Problems. North-Holland Publishing Company, Amsterdam–New York–Oxford (1979) Luc, D.T.: Theory of Vector Optimization. Springer-Verlag, Berlin–Heidelberg (1989) Pascoletti, A., Serafini, P.: Scalarizing vector optimization problems. J. Optim. Theory Appl. 42, 499–524 (1984) Rockafellar, R.T.: Convex Analysis. Princeton University Press, Princeton, NJ (1970) Sterna-Karwat, A.: Continuous dependence of solutions on a parameter in a scalarization method. J. Optim. Theory Appl. 55, 417–434 (1987) Sterna-Karwat, A.: Lipschitz and differentiable dependence of solutions on a parameter in a scalarization method. J. Aust. Math. Soc. Ser. A 42, 353–364 (1987)