The ABC of binding-protein-dependent transport in Archaea

Trends in Microbiology - Tập 15 - Trang 389-397 - 2007
Sung-Jae Lee1, Alex Böhm2, Michael Krug3, Winfried Boos3
1Department of Biology, Research Institute for Basic Science, Kyung Hee University, Seoul 130-701, Korea
2Molecular Microbiology Division, Biozentrum, University of Basel, 4056 Basel, Switzerland
3Department of Biology, University of Konstanz, 78457 Konstanz, Germany

Tài liệu tham khảo

Boos, 1974, Bacterial transport, Annu. Rev. Biochem., 43, 123, 10.1146/annurev.bi.43.070174.001011 Bishop, 1989, Reconstitution of a bacterial periplasmic permease in proteoliposomes and demonstration of ATP hydrolysis concomitant with transport, Proc. Natl. Acad. Sci. U. S. A., 86, 6953, 10.1073/pnas.86.18.6953 Dean, 1989, Maltose transport in membrane vesicles of Escherichia coli is linked to ATP hydrolysis, Proc. Natl. Acad. Sci. U. S. A., 86, 9134, 10.1073/pnas.86.23.9134 Higgins, 1986, A family of related ATP-binding subunits coupled to many distinct biological processes in bacteria, Nature, 323, 448, 10.1038/323448a0 Ames, 1990, Bacterial periplasmic permeases belong to a family of transport proteins operating from Escherichia coli to humans: traffic ATPases, FEMS Microbiol. Rev., 75, 429, 10.1016/S0168-6445(05)80008-7 Linton, 1998, The Escherichia coli ATP-binding cassette (ABC) proteins, Mol. Microbiol., 28, 5, 10.1046/j.1365-2958.1998.00764.x Higgins, 1992, ABC transporters: from microorganisms to man, Annu. Rev. Cell Biol., 8, 67, 10.1146/annurev.cb.08.110192.000435 Schmitt, 2003, Crystal structure of the nucleotide-binding domain of the ABC-transporter haemolysin B: identification of a variable region within ABC helical domains, J. Mol. Biol., 330, 333, 10.1016/S0022-2836(03)00592-8 Nasmyth, 2005, The structure and function of SMC and kleisin complexes, Annu. Rev. Biochem., 74, 595, 10.1146/annurev.biochem.74.082803.133219 Hopfner, 2000, Structural biology of Rad50 ATPase: ATP-driven conformational control in DNA double-strand break repair and the ABC-ATPase superfamily, Cell, 101, 789, 10.1016/S0092-8674(00)80890-9 Holland, 1999, ABC-ATPases, adaptable energy generators fuelling transmembrane movement of a variety of molecules in organisms from bacteria to humans, J. Mol. Biol., 293, 381, 10.1006/jmbi.1999.2993 Ames, 1986, Bacterial periplasmic transport systems, Annu. Rev. Biochem., 55, 397, 10.1146/annurev.bi.55.070186.002145 Boos, 1996, Periplasmic binding protein-dependent ABC transporters, 1175 Xavier, 1996, High-affinity maltose/trehalose transport system in the hyperthermophilic archaeon Thermococcus litoralis, J. Bacteriol., 178, 4773, 10.1128/jb.178.16.4773-4777.1996 Horlacher, 1998, Archaeal binding protein-dependent ABC transporter: molecular and biochemical analysis of the trehalose/maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis, J. Bacteriol., 180, 680, 10.1128/JB.180.3.680-689.1998 Greller, 1999, Molecular and biochemical analysis of MalK, the ATP-hydrolyzing subunit of the trehalose maltose transport system of the hyperthermophilic archaeon Thermococcus litoralis, J. Biol. Chem., 274, 20259, 10.1074/jbc.274.29.20259 Mourez, 1997, Heat shock induction by a misassembled cytoplasmic membrane protein complex in Escherichia coli, Mol. Microbiol., 26, 821, 10.1046/j.1365-2958.1997.6271992.x Albers, 2004, Insights into ABC transport in archaea, J. Bioenerg. Biomembr., 36, 5, 10.1023/B:JOBB.0000019593.84933.e6 Albers, 1999, A unique short signal sequence in membrane-anchored proteins of Archaea, Mol. Microbiol., 31, 1595, 10.1046/j.1365-2958.1999.01286.x Szabo, 2007, Identification of diverse archaeal proteins with class III signal peptides cleaved by distinct archaeal prepilin peptidases, J. Bacteriol., 189, 772, 10.1128/JB.01547-06 Albers, 2003, Archaeal homolog of bacterial type IV prepilin signal peptidases with broad substrate specificity, J. Bacteriol., 185, 3918, 10.1128/JB.185.13.3918-3925.2003 DiRuggiero, 2000, Evidence of recent lateral gene transfer among hyperthermophilic Archaea, Mol. Microbiol., 38, 684, 10.1046/j.1365-2958.2000.02161.x Elferink, 2001, Sugar transport in Sulfolobus solfataricus is mediated by two families of binding protein-dependent ABC transporters, Mol. Microbiol., 39, 1494, 10.1046/j.1365-2958.2001.02336.x Albers, 1999, Glucose transport in the extremely thermoacidophilic Sulfolobus solfataricus involves a high-affinity membrane-integrated binding protein, J. Bacteriol., 181, 4285, 10.1128/JB.181.14.4285-4291.1999 Diez, 2001, The crystal structure of a liganded trehalose/maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis at 1.85Å, J. Mol. Biol., 305, 905, 10.1006/jmbi.2000.4203 Quiocho, 1996, Atomic structure and specificity of bacterial periplasmic receptors for active transport and chemotaxis: variation of common themes, Mol. Microbiol., 20, 17, 10.1111/j.1365-2958.1996.tb02484.x Evdokimov, 2001, Structural basis for oligosaccharide recognition by Pyrococcus furiosus maltodextrin-binding protein, J. Mol. Biol., 305, 891, 10.1006/jmbi.2000.4202 Spurlino, 1991, The 2.3-Å resolution structure of the maltose- or maltodextrin-binding protein, a primary receptor of bacterial active transport and chemotaxis, J. Biol. Chem., 266, 5202, 10.1016/S0021-9258(19)67774-4 Herman, 2006, D-Trehalose/D-maltose-binding protein from the hyperthermophilic archaeon Thermococcus litoralis: the binding of trehalose and maltose results in different protein conformational states, Prot. Struct. Funct. Bioinformat., 63, 754, 10.1002/prot.20952 Mourez, 1997, Subunit interactions in ABC transporters: a conserved sequence in hydrophobic membrane proteins of periplasmic permeases defines an important site of interaction with the ATPase subunits, EMBO J., 16, 3066, 10.1093/emboj/16.11.3066 Verdon, 2003, Crystal structures of the ATPase subunits of the glucose ABC transporter from Sulfolobus solfataricus: nucleotide-free and nucleotide-bound conformations, J. Mol. Biol., 330, 343, 10.1016/S0022-2836(03)00575-8 Diederichs, 2000, Crystal structure of MalK, the ATPase subunit of the trehalose/maltose ABC transporter of the archaeon Thermococcus litoralis, EMBO J., 19, 5951, 10.1093/emboj/19.22.5951 Yuan, 2001, The crystal structure of the MJ0796 ATP-binding cassette: implications for the structural consequences of ATP hydrolysis in the active site of an ABC-transporter, J. Biol. Chem., 276, 32313, 10.1074/jbc.M100758200 Karpowich, 2001, Crystal structures of the MJ1267 ATP binding cassette reveal an induced-fit effect at the ATPase active site of an ABC transporter, Structure, 9, 571, 10.1016/S0969-2126(01)00617-7 Smith, 2002, ATP binding to the motor domain from an ABC transporter drives formation of a nucleotide sandwich dimer, Mol. Cell, 10, 139, 10.1016/S1097-2765(02)00576-2 Chen, 2003, A tweezers-like motion of the ATP-binding cassette dimer in an ABC transport cycle, Mol. Cell, 12, 651, 10.1016/j.molcel.2003.08.004 Hollenstein, 2007, Structure of an ABC transporter in complex with its binding protein, Nature, 446, 213, 10.1038/nature05626 Austermuhle, 2004, Maltose-binding protein is open in the catalytic transition state for ATP hydrolysis during maltose transport, J. Biol. Chem., 279, 28243, 10.1074/jbc.M403508200 Sharma, 2000, Vanadate-induced trapping of nucleotides by purified maltose transport complex requires ATP hydrolysis, J. Bacteriol., 182, 6570, 10.1128/JB.182.23.6570-6576.2000 Chen, 2001, Trapping the transition state of an ATP-binding cassette transporter: evidence for a concerted mechanism of maltose transport, Proc. Natl. Acad. Sci. U. S. A., 98, 1525, 10.1073/pnas.041542498 Daus, 2006, ATP induces conformational changes of periplasmic loop regions of the maltose ATP-binding cassette transporter, J. Biol. Chem., 281, 3856, 10.1074/jbc.M511953200 Panagiotidis, 1998, The ATP-binding cassette subunit of the maltose transporter MalK antagonizes MalT, the activator of the Escherichia coli mal regulon, Mol. Microbiol., 30, 535, 10.1046/j.1365-2958.1998.01084.x Joly, 2004, MalK, the ATP-binding cassette component of the Escherichia coli maltodextrin transporter, inhibits the transcriptional activator MalT by antagonizing inducer binding, J. Biol. Chem., 279, 33123, 10.1074/jbc.M403615200 Böhm, 2004, Gene regulation in prokaryotes by subcellular relocalization of transcription factors, Curr. Opin. Microbiol., 7, 151, 10.1016/j.mib.2004.02.009 Böhm, 2002, Structural model of MalK, the ABC subunit of the maltose transporter of Escherichia coli. Implications for mal gene regulation, inducer exclusion, and subunit assembly, J. Biol. Chem., 277, 3708, 10.1074/jbc.M107905200 Boos, 2000, Learning new tricks from an old dog. MaIT of the Escherichia coli maltose system is part of a complex regulatory network, Trends Genet., 16, 404, 10.1016/S0168-9525(00)02086-2 Henne, 2004, The genome sequence of the extreme thermophile Thermus thermophilus, Nat. Biotechnol., 22, 547, 10.1038/nbt956 Nelson, 1999, Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima, Nature, 399, 323, 10.1038/20601 Lee, 2007, Characterization of the TrmB-like protein, PF0124, a TGM-recognizing transcriptional regulator of the hyperthermophilic archaeon Pyrococcus furiosus, Mol. Microbiol., 65, 305, 10.1111/j.1365-2958.2007.05780.x Lee, 2000, Signal transduction between a membrane bound transporter, PtsG, and a soluble transcription factor, Mlc, of Escherichia coli, EMBO J., 19, 5353, 10.1093/emboj/19.20.5353 Hall, 1999, The high-resolution crystal structure of the molybdate-dependent transcriptional regulator (ModE) from Escherichia coli: a novel combination of domain folds, EMBO J., 18, 1435, 10.1093/emboj/18.6.1435 Thomm, M. and Hausner, W. (2006) Transcriptional Mechanisms. In Archaea: Evolution, Physiology and Molecular Biology (Garrett, R., and Klenk, H.-P., eds), Blackwell Publ (in press) Geiduschek, 2005, Archaeal transcription and its regulators, Mol. Microbiol., 56, 1397, 10.1111/j.1365-2958.2005.04627.x Lee, 2003, TrmB, a sugar-specific transcriptional regulator of the trehalose/maltose ABC transporter from the hyperthermophilic archaeon Thermococcus litoralis, J. Biol. Chem., 278, 983, 10.1074/jbc.M210236200 Lee, 2005, TrmB, a sugar sensing regulator for ABC transporter genes in Pyrococcus furiosus exhibits dual promoter specificity and is controlled by different inducers, Mol. Microbiol., 57, 1797, 10.1111/j.1365-2958.2005.04804.x Lee, 2007, Differential signal transduction via TrmB, a sugar sensing transcriptional repressor of Pyrococcus furiosus, Mol. Microbiol., 64, 1499, 10.1111/j.1365-2958.2007.05737.x Krug, 2006, Crystal structure of the sugar binding domain of the archaeal transcriptional regulator TrmB, J. Biol. Chem., 281, 10976, 10.1074/jbc.M512809200 Nichols, 1993, Model of lactose repressor core based on alignment with sugar-binding proteins is concordant with genetic and chemical data, J. Biol. Chem., 268, 17602, 10.1016/S0021-9258(19)85375-9