The 2H+/2e− free radical scavenging mechanisms of uric acid: thermodynamics of NH bond cleavage

Computational and Theoretical Chemistry - Tập 1077 - Trang 2-10 - 2016
Ana Amić1, Zoran Marković2, Jasmina M. Dimitrić Marković3, Bono Lučić4, Višnja Stepanić4, Dragan Amić5
1Department of Biology, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8a, HR-31000 Osijek, Croatia
2Department of Chemical-Technological Sciences, State University of Novi Pazar, Vuka Karadžića bb, 36300 Novi Pazar, Serbia
3Faculty of Physical Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
4Ruđer Bošković Institute, P. O. Box 180, HR-10002 Zagreb, Croatia
5Faculty of Agriculture, Josip Juraj Strossmayer University of Osijek, Kralja Petra Svačića 1d, HR-31000 Osijek, Croatia

Tài liệu tham khảo

Havsteen, 2002, The biochemistry and medicinal significance of flavonoids, Pharmacol. Therapeut., 96, 67, 10.1016/S0163-7258(02)00298-X Pietta, 2000, Flavonoids as antioxidants, J. Nat. Prod., 63, 1035, 10.1021/np9904509 Del Rio, 2013, Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases, Antioxid. Redox Signal., 18, 1818, 10.1089/ars.2012.4581 Hollman, 2014, Unravelling of the health effects of polyphenols is a complex puzzle complicated by metabolism, Arch. Biochem. Biophys., 559, 100, 10.1016/j.abb.2014.04.013 Lotito, 2004, The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effects of fructose on urate, not apple-derived antioxidant flavonoids, Free Radic. Biol. Med., 37, 251, 10.1016/j.freeradbiomed.2004.04.019 Desideri, 2014, Is it time to revise the normal range of serum uric acid levels?, Eur. Rev. Med. Pharmacol. Sci., 18, 1295 Chong, 2013, Theoretical study of uric acid and its ions in aqueous solution, J. Theor. Comput. Sci., 1, 1, 10.4172/jtco.1000104 Simic, 1989, Antioxidant mechanisms of uric acid, J. Am. Chem. Soc., 111, 5778, 10.1021/ja00197a042 Benzie, 1996, The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”: the FRAP assay, Anal. Biochem., 239, 70, 10.1006/abio.1996.0292 Grassi, 2013, Chronic hyperuricemia, uric acid deposit and cardiovascular risk, Curr. Pharm. Des., 19, 2432, 10.2174/1381612811319130011 Feig, 2008, Uric acid and cardiovascular risk, N. Engl. J. Med., 359, 1811, 10.1056/NEJMra0800885 Richette, 2010, Gout, Lancet, 375, 318, 10.1016/S0140-6736(09)60883-7 Lippi, 2008, The paradoxical relationship between serum uric acid and cardiovascular disease, Clin. Chim. Acta, 392, 1, 10.1016/j.cca.2008.02.024 Becker, 1993, Towards the physiological function of uric acid, Free Radic. Biol. Med., 14, 615, 10.1016/0891-5849(93)90143-I Ames, 1981, Uric acid provides an antioxidant defence in humans against oxidant- and radical-caused aging and cancer: a hypothesis, Proc. Natl. Acad. Sci. USA, 78, 6858, 10.1073/pnas.78.11.6858 Davies, 1986, Uric acid-iron ion complexes. A new aspect of the antioxidant functions of uric acid, Biochem. J., 235, 747, 10.1042/bj2350747 Kuzkaya, 2005, Interactions of peroxynitrite with uric acid in the presence of ascorbate and thiols: implications for uncoupling endothelial nitric oxide synthase, Biochem. Pharmacol., 70, 343, 10.1016/j.bcp.2005.05.009 Young, 2001, Antioxidants in health and disease, J. Clin. Pathol., 54, 176, 10.1136/jcp.54.3.176 Valko, 2007, Free radicals and antioxidants in normal physiological functions and human disease, Int. J. Biochem. Cell Biol., 39, 44, 10.1016/j.biocel.2006.07.001 Pham-Huy, 2008, Free radicals, antioxidants in disease and health, Int. J. Biomed. Sci., 4, 89 Glantzounis, 2005, Uric acid and oxidative stress, Curr. Pharm. Des., 11, 4145, 10.2174/138161205774913255 Muraoka, 2003, Inhibition by uric acid of free radicals that damage biological molecules, Pharmacol. Toxicol., 93, 284, 10.1111/j.1600-0773.2003.pto930606.x Sueishi, 2011, Nitric oxide (NO) scavenging capacity of natural antioxidants, Food Chem., 129, 866, 10.1016/j.foodchem.2011.05.036 Hooper, 1998, Uric acid, a natural scavenger of peroxynitrite, in experimental allergic encephalomyelitis and multiple sclerosis, Proc. Natl. Acad. Sci. USA, 95, 675, 10.1073/pnas.95.2.675 Leon-Carmona, 2011, Uric and 1-methyluric acids: metabolic wastes or antiradical protectors?, J. Phys. Chem. B, 115, 15430, 10.1021/jp209776x So, 2010, Uric acid transport and disease, J. Clin. Invest., 120, 1791, 10.1172/JCI42344 Kadowaki, 2015, Direct radical scavenging activity of benzbromarone provides beneficial antioxidant properties for hyperuricemia treatment, Biol. Pharm. Bull., 38, 487, 10.1248/bpb.b14-00514 Sautin, 2008, Uric acid: the oxidant–antioxidant paradox, Nucleos. Nucleot. Nucl., 27, 608, 10.1080/15257770802138558 Gagliardi, 2009, Uric acid: a marker of increased cardiovascular risk, Atherosclerosis, 202, 11, 10.1016/j.atherosclerosis.2008.05.022 Alberto, 2013, A physicochemical examination of the free radical scavenging activity of Trolox: mechanism, kinetics and influence of the environment, Phys. Chem. Chem. Phys., 15, 4642, 10.1039/c3cp43319f Rimarčik, 2010, Study of the solvent effects on the enthalpies of homolytic and heterolytic NH bond cleavage in p-phenylenediamine and tetracyano-p-phenylenediamnie, J. Mol. Struct. (Theochem), 952, 25, 10.1016/j.theochem.2010.04.002 Najafi, 2012, DFT/B3LYP study of the substituent effects on the reaction enthalpies of the antioxidant mechanisms of Indole-3-Carbinol derivatives in the gas-phase and water, Comput. Theor. Chem., 999, 34, 10.1016/j.comptc.2012.08.008 Vaganek, 2013, Homolytic NH bond cleavage in anilines: energetics and substituent effect, Comput. Theor. Chem., 1014, 60, 10.1016/j.comptc.2013.03.027 Poliak, 2015, Substitution and torsional effects on the energetics of homolytic NH bond cleavage in diphenylamines, Polym. Degrad. Stabil., 114, 37, 10.1016/j.polymdegradstab.2015.01.019 Volk, 1989, On-line electrochemistry/thermospray/tandem mass spectrometry as a new approach to the study of redox reactions: the oxidation of uric acid, Anal. Chem., 61, 1709, 10.1021/ac00190a024 Santos, 1999, Uric acid oxidation by peroxynitrite: multiple reactions, free radical formation, and amplification of lipid oxidation, Arch. Biochem. Biophys., 372, 285, 10.1006/abbi.1999.1491 Kahn, 1999, Theoretical study of intermediates in the urate oxidase reaction, Bioorg. Chem., 27, 351, 10.1006/bioo.1999.1142 Amić, 2014, Towards an improved prediction of the free radical scavenging potency of flavonoids: the significance of double PCET mechanisms, Food Chem., 152, 578, 10.1016/j.foodchem.2013.12.025 Zhang, 2006, How vitamin E scavenges DPPH radicals in polar protic media, New J. Chem., 30, 503, 10.1039/b600025h Košinova, 2011, H-atom acceptor capacity of free radicals used in antioxidant measurements, Int. J. Quantum Chem., 111, 1131, 10.1002/qua.22555 Rimarčik, 2008, Theoretical study of structure and electronic properties of cyano-substituted pyrroles, Chem. Phys., 353, 177, 10.1016/j.chemphys.2008.08.010 Xie, 2014, Re-evaluation of the 2,2-diphenyl-1-picrylhydrazyl free radical (DPPH) assay for antioxidant activity, J. Agric. Food Chem., 62, 4251, 10.1021/jf500180u Galano, 2009, Role of the reacting free radicals on the antioxidant mechanism of curcumin, Chem. Phys., 363, 13, 10.1016/j.chemphys.2009.07.003 Galano, 2011, On the direct scavenging activity of melatonin towards hydroxyl and a series of peroxyl radicals, Phys. Chem. Chem. Phys., 13, 7147, 10.1039/c0cp02801k Castaneda-Arriaga, 2014, Lipoic acid and dihydrolipoic acid. A comprehensive theoretical study of their antioxidant activity supported by available experimental kinetic data, J. Chem. Inf. Model., 54, 1642, 10.1021/ci500213p Galano, 2011, Melatonin as a natural ally against oxidative stress: a physicochemical examination, J. Pineal. Res., 51, 1, 10.1111/j.1600-079X.2011.00916.x Rose, 1993, Biology of free radical scavengers: an evaluation of ascorbate, FASEB J., 7, 1135, 10.1096/fasebj.7.12.8375611 J.W. Ochterski, Thermochemistry in Gaussian, Gaussian, Inc., 2000. Dimitrić Marković, 2014, The preferred radical scavenging mechanism of fisetin and baicalein towards oxygen-centred radicals in polar protic and polar aprotic solvents, RSC Adv., 4, 32228, 10.1039/C4RA02577F M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, Jr., J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, O. Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision A.02, Gaussian, Inc., Wallingford CT, 2009. Leopoldini, 2011, The molecular basis of working mechanisms of natural polyphenolic antioxidants, Food Chem., 125, 288, 10.1016/j.foodchem.2010.08.012 Galano, 2012, On the free radical scavenging mechanism of protocatechuic acid, regeneration of the catechol group in aqueous solution, Theor. Chem. Acc., 131, 1265, 10.1007/s00214-012-1265-0 Zhao, 2006, Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions, J. Chem. Theory Comput., 2, 364, 10.1021/ct0502763 Zhao, 2008, Theor. Chem. Acc., 120, 215, 10.1007/s00214-007-0310-x Peverati, 2014, Quest for a universal density functional: the accuracy of density functionals across a broad spectrum of databases in chemistry and physics, Philos. Trans. R. Soc. A, 372, 20120476, 10.1098/rsta.2012.0476 Zhao, 2008, How well can new-generation density functionals describe the energetics of bond-dissociation reactions producing radicals?, J. Phys. Chem. A, 112, 1095, 10.1021/jp7109127 Alvarez-Diduk, 2015, N-Acetylserotonin and 6-hydroxymelatonin against oxidative stress: Implications for the overall protection exerted by melatonin, J. Phys. Chem. B, 119, 8535, 10.1021/acs.jpcb.5b04920 Marenich, 2009, Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions, J. Phys. Chem. B, 113, 6378, 10.1021/jp810292n Leopoldini, 2011, Detailed investigation of the OH radical quenching by natural antioxidant caffeic acid studied by quantum mechanical models, J. Chem. Theory Comput., 7, 4218, 10.1021/ct200572p Iuga, 2012, Antioxidant activity of trans-resveratrol toward hydroxyl and hydroperoxyl radicals: a quantum chemical and computational kinetic study, J. Org. Chem., 77, 3868, 10.1021/jo3002134 Marković, 2013, Examination of the chemical behaviour of the quercetin radical cation towards some bases, Phys. Chem. Chem. Phys., 15, 7370, 10.1039/c3cp44605k Bartmess, 1994, Thermodynamics of the electron and the proton, J. Phys. Chem., 98, 6420, 10.1021/j100076a029 Klein, 2007, DFT/B3LYP study of tocopherols and chromans antioxidant action energetics, Chem. Phys., 336, 51, 10.1016/j.chemphys.2007.05.007 Raczynska, 2010, Importance of CH tautomers in the tautomeric mixture of uric acid, J. Mol. Struct. (Theochem), 947, 83, 10.1016/j.theochem.2010.01.045 Jimenez, 2005, Theoretical calculations on the tautomerism of uric acid in gas phase and aqueous solution, J. Mol. Struct. (Theochem), 755, 209, 10.1016/j.theochem.2005.08.001 Altarsha, 2007, Comparative semiempirical and ab initio study of the structural and chemical properties of uric acid and its anions, Int. J. Quantum. Chem., 107, 172, 10.1002/qua.21057 Yamazaki, 2014, Ab initio studies on the photophysics of uric acid and its monohydrates: role of the water molecule, J. Phys. Chem. A, 118, 1132, 10.1021/jp411880z Amić, 2013, PM6 study of free radical scavenging mechanisms of flavonoids: why does OH bond dissociation enthalpy effectively represent free radical scavenging activity?, J. Mol. Model., 19, 2593, 10.1007/s00894-013-1800-5 Shukla, 1996, Electronic structures and spectra of two antioxidants: uric acid and ascorbic acid, J. Mol. Struct., 377, 247 Kahn, 1997, Identification of the true product of the urate oxidase reaction, J. Am. Chem. Soc., 119, 5435, 10.1021/ja970375t Telo, 2003, Radicals derived from uric acid and its methyl derivatives in aqueous solution: an EPR spectroscopy and theoretical study, Org. Biomol. Chem., 1, 588, 10.1039/b208827b Allen, 2004, A theoretical study of the structure and properties of uric acid: a potent antioxidant, Int. J. Quantum Chem., 100, 801, 10.1002/qua.20246 Chandra, 2007, Theoretical study of the acidity and basicity of uric acid and its interaction with water, J. Mol. Struct. (Theochem), 811, 215, 10.1016/j.theochem.2007.02.021 Maples, 1988, Free radical metabolite of uric acid, J. Biol. Chem., 263, 1709, 10.1016/S0021-9258(19)77933-2 Perez-Gonzalez, 2015, Free-radical scavenging by tryptophan and its metabolites through electron transfer based processes, J. Mol. Model., 21, 213, 10.1007/s00894-015-2758-2