The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices

TrAC Trends in Analytical Chemistry - Tập 50 - Trang 78-84 - 2013
Agnieszka Gałuszka1, Zdzisław M. Migaszewski1, Jacek Namieśnik2
1Geochemistry and the Environment Div., Institute of Chemistry, Jan Kochanowski University, 15G Świętokrzyska St., 25-406 Kielce, Poland
2Department of Analytical Chemistry, Chemical Faculty, Gdańsk University of Technology (GUT), 11/12 G. Narutowicz St., 80-233 Gdańsk, Poland

Tóm tắt

Từ khóa


Tài liệu tham khảo

Anastas, 1999, Green chemistry and the role of analytical methodology development, Crit. Rev. Anal. Chem., 29, 167, 10.1080/10408349891199356

Namieśnik, 2000, Trends in environmental analytics and monitoring, Crit. Rev. Anal. Chem., 30, 221, 10.1080/10408340091164243

Armenta, 2008, Green analytical chemistry, Trends Anal. Chem., 27, 497, 10.1016/j.trac.2008.05.003

Koel, 2006, Application of the principles of green chemistry in analytical chemistry, Pure Appl. Chem., 78, 1993, 10.1351/pac200678111993

Tobiszewski, 2010, Green analytical chemistry – theory and practice, Chem. Soc. Rev., 39, 2869, 10.1039/b926439f

Anastas, 1998

de la Guardia, 2011, An ethical commitment and economic opportunity, 1

Tang, 2005, Principles of green chemistry: PRODUCTIVELY, Green Chem., 7, 761, 10.1039/b513020b

Tang, 2008, The 24 Principles of Green Engineering and Green Chemistry: “IMPROVEMENTS PRODUCTIVELY”, Green Chem., 10, 268, 10.1039/b719469m

Clark, 2005, Green chemistry and environmentally friendly technologies, 3

de la Guardia, 2011

Gałuszka, 2012, Analytical Eco-Scale for assessing the greenness of analytical procedures, Trends Anal. Chem., 37, 61, 10.1016/j.trac.2012.03.013

Chen, 2005, Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction, Talanta, 67, 992, 10.1016/j.talanta.2005.04.029

Alves, 2011, Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode, Anal. Chim. Acta, 703, 1, 10.1016/j.aca.2011.07.022

Nielsen, 2010, Water quality monitoring records for estimating tap water arsenic and nitrate: a validation study, Environ. Health, 9, 4, 10.1186/1476-069X-9-4

Masár, 2012, Determination of chloride, sulfate and nitrate in drinking water by microchip electrophoresis, Microchim. Acta, 177, 309, 10.1007/s00604-012-0788-3

Shah, 2008, Spectrophotometric method for determination of atrazine and its application to commercial formulations and real samples, Int. J. Environ. An. Ch., 88, 1077, 10.1080/03067310802263522

Keay, 1998, Separation-free electrochemical immunosensor for rapid determination of atrazine, Biosens. Bioelectron., 13, 963, 10.1016/S0956-5663(98)00008-6

Cargouet, 2004, Assessment of river contamination by estrogenic compounds in Paris area (France), Sci. Total Environ., 324, 55, 10.1016/j.scitotenv.2003.10.035

Kim, 2007, Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip, Biosens. Bioelectron., 22, 2525, 10.1016/j.bios.2006.10.004

Zafra, 2003, Gas chromatographic–mass spectrometric method for the determination of bisphenol A and its chlorinated derivatives in urban wastewater, Water Res., 37, 735, 10.1016/S0043-1354(02)00413-X

Rather, 2013, Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology, Sensor. Actuat. B-Chem., 176, 110, 10.1016/j.snb.2012.08.081

Kamburova, 1993, Spectrophotometric determination of mercury in soils with triphenyltetrazolium chloride, Talanta, 40, 719, 10.1016/0039-9140(93)80285-Y

Resano, 2005, Solid sampling-graphite furnace atomic absorption spectrometry for Hg monitoring in soils. Performance as a quantitative and as a screening method, J. Anal. At. Spectrom., 20, 1374, 10.1039/b509645f

Saari, 2010, Evaluating the impact of GC operating settings on GC–FID performance for total petroleum hydrocarbon (TPH) determination, Microchem. J., 94, 73, 10.1016/j.microc.2009.09.004

R. Stewart, B. Dearman, S. Forrester, L. Janik, M. McLaughlin, Proc. EcoForum (2011) Article Number: EP104879.

Aydemir, 2011, Determination of some trace elements by flame atomic absorption spectrometry after preconcentration and separation by Escherichia coli immobilized on multiwalled carbon nanotubes, Microchim. Acta, 175, 185, 10.1007/s00604-011-0668-2

Raith, 1995, Non-destructive sampling method of metals and alloys for laser ablation-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 10, 591, 10.1039/ja9951000591

Nagaraja, 2002, Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate–pyrocatechol, Anal. Biochem., 307, 316, 10.1016/S0003-2697(02)00038-6

Mirmoghtadaie, 2013, Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology, Mater. Sci. Eng., 33, 1753, 10.1016/j.msec.2012.12.090

Burrin, 1990, What is blood glucose: can it be measured?, Diabetic Med., 7, 199, 10.1111/j.1464-5491.1990.tb01370.x

Yoo, 2010, Glucose biosensors: an overview of use in clinical practice, Sensors, 10, 4558, 10.3390/s100504558

Karadjova, 2004, Sensitive Method for Trace Determination of Mercury in Wines Using Electrothermal Atomic Absorption Spectrometry, Microchim. Acta, 147, 39, 10.1007/s00604-004-0216-4

Li, 2006, Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples, J. Anal. At. Spectrom., 21, 82, 10.1039/B512198A

Missiaen, 2010, Evaluation of a chemical munition dumpsite in the Baltic Sea based on geophysical and chemical investigations, Sci. Total Environ., 408, 3536, 10.1016/j.scitotenv.2010.04.056

Kalnicky, 2001, Field portable XRF analysis of environmental samples, J. Hazard. Mater., 83, 93, 10.1016/S0304-3894(00)00330-7

Lamothe, 2010, Recent geochemical investigations at the U.S. Geological Survey, Mineralogia Spec. Pap., 36, 21

Migaszewski, 2005, The use of the barbell cluster ANOVA design for the assessment of environmental pollution: a case study, Wigierski National Park, NE Poland, Environ. Pollut., 133, 213, 10.1016/j.envpol.2004.06.007

Brett, 2007, Novel sensor devices and monitoring strategies for green and sustainable chemistry processes, Pure Appl. Chem., 79, 1969, 10.1351/pac200779111969

Chailapakul, 2008, Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis, Talanta, 74, 683, 10.1016/j.talanta.2007.06.034

Liu, 2003, Recent progress in the development of μTAS for clinical analysis, Analyst, 128, 1002, 10.1039/B306278N

Garrigues, 2013, Non-invasive analysis of solid samples, Trends Anal. Chem., 43, 161, 10.1016/j.trac.2012.10.008

Kaljurand, 2012, Green bioanalytical chemistry, Bioanalysis, 4, 1271, 10.4155/bio.12.70

Wang, 2002, Real-Time Electrochemical Monitoring: Toward Green Analytical Chemistry, Acc. Chem. Res., 35, 811, 10.1021/ar010066e

Armenta, 2009, Green spectroscopy: a scientometric picture, Spectrosc. Lett., 42, 277, 10.1080/00387010903430439

C. Bendicho, I. Lavilla, F. Pena-Pereira, V. Romero, Green chemistry in analytical atomic spectrometry: a review, J. Anal. At. Spectrom. 27 (2012) 1831–1857.

He, 2007, Spectroscopy: The Best Way Toward Green Analytical Chemistry?, Appl. Spectrosc. Rev., 42, 119, 10.1080/05704920601184259

Sandra, 2010, Green chromatography (Part 1): introduction and liquid chromatography, LCGC Europe, 23, 242

Sandra, 2010, Green chromatography (part 2): the role of GC and SFC, LCGC Europe, 23, 396

Tobiszewski, 2012, Direct chromatographic methods in the context of green analytical chemistry, Trends Anal. Chem., 35, 67, 10.1016/j.trac.2012.02.006

Bendicho, 2012, Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry, Trends Anal. Chem., 31, 50, 10.1016/j.trac.2011.06.018

de la Guardia, 2012, The concept of green analytical chemistry, 3

Manz, 1990, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sens. Actuators B, 1, 244, 10.1016/0925-4005(90)80209-I

Ríos, 2006, Challenges of analytical microsystems, Trends Anal. Chem., 25, 467, 10.1016/j.trac.2005.11.012

de la Guardia, 2010, Green solvents for analytical separation and analyses, 1987

Koel, 2005, Ionic liquids in chemical analysis, Crit. Rev. Anal. Chem., 35, 177, 10.1080/10408340500304016

Liu, 2005, Application of ionic liquids in analytical chemistry, Trends Anal. Chem., 24, 20, 10.1016/j.trac.2004.09.005

Sun, 2010, Ionic liquids in analytical chemistry, Anal. Chim. Acta, 661, 1, 10.1016/j.aca.2009.12.007

Zhao, 2005, Use of ionic liquids as ‘green’ solvents for extractions, J. Chem. Technol. Biot., 80, 1089, 10.1002/jctb.1333

Ding, 2004, Chiral ionic liquids as stationary phases in gas chromatography, Anal. Chem., 76, 6819, 10.1021/ac049144c

Hsieh, 2010, Supercritical fluids and green bioanalysis, Bioanalysis, 2, 1, 10.4155/bio.09.140

Brondz, 2012, Yesterday, Today and Tomorrow of Supercritical Fluid Extraction and Chromatography, Am. J. Anal. Chem., 3, 867, 10.4236/ajac.2012.312A114

Grudpan, 2010, The case for the use of unrefined natural reagents in analytical chemistry – A green chemical perspective, Anal. Methods, 1651, 10.1039/c0ay00253d

Hartwell, 2012, Exploring the potential for using inexpensive natural reagents extracted from plants to teach chemical analysis, Chem. Educ. Res. Pract., 13, 135, 10.1039/C1RP90070F

Keith, 2007, Green analytical methodologies, Chem. Rev., 107, 2695, 10.1021/cr068359e

Garrigues, 2010, Green strategies for decontamination of analytical wastes, Trends Anal. Chem., 29, 592, 10.1016/j.trac.2010.03.009