The 12 principles of green analytical chemistry and the SIGNIFICANCE mnemonic of green analytical practices
Tóm tắt
Từ khóa
Tài liệu tham khảo
Anastas, 1999, Green chemistry and the role of analytical methodology development, Crit. Rev. Anal. Chem., 29, 167, 10.1080/10408349891199356
Namieśnik, 2000, Trends in environmental analytics and monitoring, Crit. Rev. Anal. Chem., 30, 221, 10.1080/10408340091164243
Koel, 2006, Application of the principles of green chemistry in analytical chemistry, Pure Appl. Chem., 78, 1993, 10.1351/pac200678111993
Tobiszewski, 2010, Green analytical chemistry – theory and practice, Chem. Soc. Rev., 39, 2869, 10.1039/b926439f
Anastas, 1998
de la Guardia, 2011, An ethical commitment and economic opportunity, 1
Tang, 2008, The 24 Principles of Green Engineering and Green Chemistry: “IMPROVEMENTS PRODUCTIVELY”, Green Chem., 10, 268, 10.1039/b719469m
Clark, 2005, Green chemistry and environmentally friendly technologies, 3
de la Guardia, 2011
Gałuszka, 2012, Analytical Eco-Scale for assessing the greenness of analytical procedures, Trends Anal. Chem., 37, 61, 10.1016/j.trac.2012.03.013
Chen, 2005, Determination of lead in water samples by graphite furnace atomic absorption spectrometry after cloud point extraction, Talanta, 67, 992, 10.1016/j.talanta.2005.04.029
Alves, 2011, Simultaneous electrochemical determination of arsenic, copper, lead and mercury in unpolluted fresh waters using a vibrating gold microwire electrode, Anal. Chim. Acta, 703, 1, 10.1016/j.aca.2011.07.022
Nielsen, 2010, Water quality monitoring records for estimating tap water arsenic and nitrate: a validation study, Environ. Health, 9, 4, 10.1186/1476-069X-9-4
Masár, 2012, Determination of chloride, sulfate and nitrate in drinking water by microchip electrophoresis, Microchim. Acta, 177, 309, 10.1007/s00604-012-0788-3
Shah, 2008, Spectrophotometric method for determination of atrazine and its application to commercial formulations and real samples, Int. J. Environ. An. Ch., 88, 1077, 10.1080/03067310802263522
Keay, 1998, Separation-free electrochemical immunosensor for rapid determination of atrazine, Biosens. Bioelectron., 13, 963, 10.1016/S0956-5663(98)00008-6
Cargouet, 2004, Assessment of river contamination by estrogenic compounds in Paris area (France), Sci. Total Environ., 324, 55, 10.1016/j.scitotenv.2003.10.035
Kim, 2007, Electrochemical detection of 17β-estradiol using DNA aptamer immobilized gold electrode chip, Biosens. Bioelectron., 22, 2525, 10.1016/j.bios.2006.10.004
Zafra, 2003, Gas chromatographic–mass spectrometric method for the determination of bisphenol A and its chlorinated derivatives in urban wastewater, Water Res., 37, 735, 10.1016/S0043-1354(02)00413-X
Rather, 2013, Fullerene-C60 sensor for ultra-high sensitive detection of bisphenol-A and its treatment by green technology, Sensor. Actuat. B-Chem., 176, 110, 10.1016/j.snb.2012.08.081
Kamburova, 1993, Spectrophotometric determination of mercury in soils with triphenyltetrazolium chloride, Talanta, 40, 719, 10.1016/0039-9140(93)80285-Y
Resano, 2005, Solid sampling-graphite furnace atomic absorption spectrometry for Hg monitoring in soils. Performance as a quantitative and as a screening method, J. Anal. At. Spectrom., 20, 1374, 10.1039/b509645f
Saari, 2010, Evaluating the impact of GC operating settings on GC–FID performance for total petroleum hydrocarbon (TPH) determination, Microchem. J., 94, 73, 10.1016/j.microc.2009.09.004
R. Stewart, B. Dearman, S. Forrester, L. Janik, M. McLaughlin, Proc. EcoForum (2011) Article Number: EP104879.
Aydemir, 2011, Determination of some trace elements by flame atomic absorption spectrometry after preconcentration and separation by Escherichia coli immobilized on multiwalled carbon nanotubes, Microchim. Acta, 175, 185, 10.1007/s00604-011-0668-2
Raith, 1995, Non-destructive sampling method of metals and alloys for laser ablation-inductively coupled plasma mass spectrometry, J. Anal. At. Spectrom., 10, 591, 10.1039/ja9951000591
Nagaraja, 2002, Spectrophotometric determination of folic acid in pharmaceutical preparations by coupling reactions with iminodibenzyl or 3-aminophenol or sodium molybdate–pyrocatechol, Anal. Biochem., 307, 316, 10.1016/S0003-2697(02)00038-6
Mirmoghtadaie, 2013, Highly selective electrochemical biosensor for the determination of folic acid based on DNA modified-pencil graphite electrode using response surface methodology, Mater. Sci. Eng., 33, 1753, 10.1016/j.msec.2012.12.090
Burrin, 1990, What is blood glucose: can it be measured?, Diabetic Med., 7, 199, 10.1111/j.1464-5491.1990.tb01370.x
Yoo, 2010, Glucose biosensors: an overview of use in clinical practice, Sensors, 10, 4558, 10.3390/s100504558
Karadjova, 2004, Sensitive Method for Trace Determination of Mercury in Wines Using Electrothermal Atomic Absorption Spectrometry, Microchim. Acta, 147, 39, 10.1007/s00604-004-0216-4
Li, 2006, Sample matrix-assisted photo-induced chemical vapor generation: a reagent free green analytical method for ultrasensitive detection of mercury in wine or liquor samples, J. Anal. At. Spectrom., 21, 82, 10.1039/B512198A
Missiaen, 2010, Evaluation of a chemical munition dumpsite in the Baltic Sea based on geophysical and chemical investigations, Sci. Total Environ., 408, 3536, 10.1016/j.scitotenv.2010.04.056
Kalnicky, 2001, Field portable XRF analysis of environmental samples, J. Hazard. Mater., 83, 93, 10.1016/S0304-3894(00)00330-7
Lamothe, 2010, Recent geochemical investigations at the U.S. Geological Survey, Mineralogia Spec. Pap., 36, 21
Migaszewski, 2005, The use of the barbell cluster ANOVA design for the assessment of environmental pollution: a case study, Wigierski National Park, NE Poland, Environ. Pollut., 133, 213, 10.1016/j.envpol.2004.06.007
Brett, 2007, Novel sensor devices and monitoring strategies for green and sustainable chemistry processes, Pure Appl. Chem., 79, 1969, 10.1351/pac200779111969
Chailapakul, 2008, Fast and simultaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis, Talanta, 74, 683, 10.1016/j.talanta.2007.06.034
Liu, 2003, Recent progress in the development of μTAS for clinical analysis, Analyst, 128, 1002, 10.1039/B306278N
Garrigues, 2013, Non-invasive analysis of solid samples, Trends Anal. Chem., 43, 161, 10.1016/j.trac.2012.10.008
Wang, 2002, Real-Time Electrochemical Monitoring: Toward Green Analytical Chemistry, Acc. Chem. Res., 35, 811, 10.1021/ar010066e
Armenta, 2009, Green spectroscopy: a scientometric picture, Spectrosc. Lett., 42, 277, 10.1080/00387010903430439
C. Bendicho, I. Lavilla, F. Pena-Pereira, V. Romero, Green chemistry in analytical atomic spectrometry: a review, J. Anal. At. Spectrom. 27 (2012) 1831–1857.
He, 2007, Spectroscopy: The Best Way Toward Green Analytical Chemistry?, Appl. Spectrosc. Rev., 42, 119, 10.1080/05704920601184259
Sandra, 2010, Green chromatography (Part 1): introduction and liquid chromatography, LCGC Europe, 23, 242
Sandra, 2010, Green chromatography (part 2): the role of GC and SFC, LCGC Europe, 23, 396
Tobiszewski, 2012, Direct chromatographic methods in the context of green analytical chemistry, Trends Anal. Chem., 35, 67, 10.1016/j.trac.2012.02.006
Bendicho, 2012, Ultrasound-assisted pretreatment of solid samples in the context of green analytical chemistry, Trends Anal. Chem., 31, 50, 10.1016/j.trac.2011.06.018
de la Guardia, 2012, The concept of green analytical chemistry, 3
Manz, 1990, Miniaturized total chemical analysis systems: a novel concept for chemical sensing, Sens. Actuators B, 1, 244, 10.1016/0925-4005(90)80209-I
Ríos, 2006, Challenges of analytical microsystems, Trends Anal. Chem., 25, 467, 10.1016/j.trac.2005.11.012
de la Guardia, 2010, Green solvents for analytical separation and analyses, 1987
Koel, 2005, Ionic liquids in chemical analysis, Crit. Rev. Anal. Chem., 35, 177, 10.1080/10408340500304016
Liu, 2005, Application of ionic liquids in analytical chemistry, Trends Anal. Chem., 24, 20, 10.1016/j.trac.2004.09.005
Sun, 2010, Ionic liquids in analytical chemistry, Anal. Chim. Acta, 661, 1, 10.1016/j.aca.2009.12.007
Zhao, 2005, Use of ionic liquids as ‘green’ solvents for extractions, J. Chem. Technol. Biot., 80, 1089, 10.1002/jctb.1333
Ding, 2004, Chiral ionic liquids as stationary phases in gas chromatography, Anal. Chem., 76, 6819, 10.1021/ac049144c
Brondz, 2012, Yesterday, Today and Tomorrow of Supercritical Fluid Extraction and Chromatography, Am. J. Anal. Chem., 3, 867, 10.4236/ajac.2012.312A114
Grudpan, 2010, The case for the use of unrefined natural reagents in analytical chemistry – A green chemical perspective, Anal. Methods, 1651, 10.1039/c0ay00253d
Hartwell, 2012, Exploring the potential for using inexpensive natural reagents extracted from plants to teach chemical analysis, Chem. Educ. Res. Pract., 13, 135, 10.1039/C1RP90070F