The 11-cis Retinal Origins of Lipofuscin in the Retina
Tài liệu tham khảo
Katz, 2002, What is lipofuscin? Defining characteristics and differentiation from other autofluorescent lysosomal storage bodies, Arch Gerontol Geriatr, 34, 169, 10.1016/S0167-4943(02)00005-5
Terman, 2004, Lipofuscin, Int J Biochem Cell Biol, 36, 1400, 10.1016/j.biocel.2003.08.009
Munnell, 1968, Rate of accumulation of cardiac lipofuscin in the aging canine, J Gerontol, 23, 154, 10.1093/geronj/23.2.154
Nakano, 1992, Accumulation of cardiac lipofuscin depends on metabolic rate of mammals, J Gerontol, 47, B126, 10.1093/geronj/47.4.B126
Haltia, 1832, The neuronal ceroid-lipofuscinoses: a historical introduction, Biochim Biophys Acta, 2012, 1795
Feeney, 1978, Lipofuscin and melanin of human retinal pigment epithelium. Fluorescence, enzyme cytochemical, and ultrastructural studies, Invest Ophthalmol Vis Sci, 17, 583
Wing, 1978, The topography and age relationship of lipofuscin concentration in the retinal pigment epithelium, Invest Ophthalmol Vis Sci, 17, 601
Delori, 1995, In vivo fluorescence of the ocular fundus exhibits retinal pigment epithelium lipofuscin characteristics, Invest Ophthalmol Vis Sci, 36, 718
Delori, 2001, Age-related accumulation and spatial distribution of lipofuscin in RPE of normal subjects, Invest Ophthalmol Vis Sci, 42, 1855
Ng, 2008, Retinal pigment epithelium lipofuscin proteomics, Mol Cell Proteomics, 7, 1397, 10.1074/mcp.M700525-MCP200
Sparrow, 2012, The bisretinoids of retinal pigment epithelium, Prog Retin Eye Res, 31, 121, 10.1016/j.preteyeres.2011.12.001
Sparrow, 2010, Phospholipid meets all-trans-retinal: the making of RPE bisretinoids, J Lipid Res, 51, 247, 10.1194/jlr.R000687
Eldred, 1993, Retinal age pigments generated by self-assembling lysosomotropic detergents, Nature, 361, 724, 10.1038/361724a0
Parish, 1998, Isolation and one-step preparation of A2E and iso-A2E, fluorophores from human retinal pigment epithelium, Proc Natl Acad Sci USA, 95, 14609, 10.1073/pnas.95.25.14609
Rozanowska, 1995, Blue light-induced reactivity of retinal age pigment. In vitro generation of oxygen-reactive species, J Biol Chem, 270, 18825, 10.1074/jbc.270.32.18825
Rozanowska, 1998, Blue light-induced singlet oxygen generation by retinal lipofuscin in non-polar media, Free Radic Biol Med, 24, 1107, 10.1016/S0891-5849(97)00395-X
Wassell, 1999, The photoreactivity of the retinal age pigment lipofuscin, J Biol Chem, 274, 23828, 10.1074/jbc.274.34.23828
Roberts, 2002, The role of A2E in prevention or enhancement of light damage in human retinal pigment epithelial cells, Photochem Photobiol, 75, 184, 10.1562/0031-8655(2002)075<0184:TROAIP>2.0.CO;2
Sparrow, 1999, A2E, a lipofuscin fluorophore, in human retinal pigmented epithelial cells in culture, Invest Ophthalmol Vis Sci, 40, 2988
Lakkaraju, 2007, The lipofuscin fluorophore A2E perturbs cholesterol metabolism in retinal pigment epithelial cells, Proc Natl Acad Sci USA, 104, 11026, 10.1073/pnas.0702504104
Vives-Bauza, 2008, The age lipid A2E and mitochondrial dysfunction synergistically impair phagocytosis by retinal pigment epithelial cells, J Biol Chem, 283, 24770, 10.1074/jbc.M800706200
Zhou, 2006, Complement activation by photooxidation products of A2E, a lipofuscin constituent of the retinal pigment epithelium, Proc Natl Acad Sci USA, 103, 16182, 10.1073/pnas.0604255103
Zhou, 2009, Complement activation by bisretinoid constituents of RPE lipofuscin, Invest Ophthalmol Vis Sci, 50, 1392, 10.1167/iovs.08-2868
Sparrow, 2005, RPE lipofuscin and its role in retinal pathobiology, Exp Eye Res, 80, 595, 10.1016/j.exer.2005.01.007
Winkler, 1999, Oxidative damage and age-related macular degeneration, Mol Vis, 5, 32
Delori, 1995, In vivo measurement of lipofuscin in Stargardt's disease—fundus flavimaculatus, Invest Ophthalmol Vis Sci, 36, 2327
Weng, 1999, Insights into the function of Rim protein in photoreceptors and etiology of Stargardt's disease from the phenotype in abcr knockout mice, Cell, 98, 13, 10.1016/S0092-8674(00)80602-9
Feeney-Burns, 1983, The fate of the phagosome: conversion to ‘age pigment’ and impact in human retinal pigment epithelium, Trans Ophthalmol Soc U K, 103, 416
Katz, 1986, Influence of early photoreceptor degeneration on lipofuscin in the retinal pigment epithelium, Exp Eye Res, 43, 561, 10.1016/S0014-4835(86)80023-9
Katz, 1989, Retinal light damage reduces autofluorescent pigment deposition in the retinal pigment epithelium, Invest Ophthalmol Vis Sci, 30, 37
Young, 1969, Participation of the retinal pigment epithelium in the rod outer segment renewal process, J Cell Biol, 42, 392, 10.1083/jcb.42.2.392
Katz, 2001, Effect of Rpe65 knockout on accumulation of lipofuscin fluorophores in the retinal pigment epithelium, Invest Ophthalmol Vis Sci, 42, 3023
Boyer, 2012, Lipofuscin and N-retinylidene-N-retinylethanolamine (A2E) accumulate in retinal pigment epithelium in absence of light exposure: their origin is 11-cis-retinal, J Biol Chem, 287, 22276, 10.1074/jbc.M111.329235
Katz, 1996, Formation of lipofuscin-like fluorophores by reaction of retinal with photoreceptor outer segments and liposomes, Mech Ageing Dev, 92, 159, 10.1016/S0047-6374(96)01817-9
Wald, 1968, Molecular basis of visual excitation, Science, 162, 230, 10.1126/science.162.3850.230
Ebrey, 2001, Vertebrate photoreceptors, Prog Retin Eye Res, 20, 49, 10.1016/S1350-9462(00)00014-8
Lamb, 2004, Dark adaptation and the retinoid cycle of vision, Prog Retin Eye Res, 23, 307, 10.1016/j.preteyeres.2004.03.001
Saari, 2000, Biochemistry of visual pigment regeneration: the Friedenwald lecture, Invest Ophthalmol Vis Sci, 41, 337
Tang, 2013, New insights into retinoid metabolism and cycling within the retina, Prog Retin Eye Res, 32, 48, 10.1016/j.preteyeres.2012.09.002
Young, 1967, The renewal of photoreceptor cell outer segments, J Cell Biol, 33, 61, 10.1083/jcb.33.1.61
Besharse, 1979, Turnover of mouse photoreceptor outer segments in constant light and darkness, Invest Ophthalmol Vis Sci, 18, 1019
Quazi, 2014, ATP-binding cassette transporter ABCA4 and chemical isomerization protect photoreceptor cells from the toxic accumulation of excess 11-cis-retinal, Proc Natl Acad Sci USA, 111, 5024, 10.1073/pnas.1400780111
Ben-Shabat, 2002, Biosynthetic studies of A2E, a major fluorophore of retinal pigment epithelial lipofuscin, J Biol Chem, 277, 7183, 10.1074/jbc.M108981200
Liu, 2000, The biosynthesis of A2E, a fluorophore of aging retina, involves the formation of the precursor, A2-PE, in the photoreceptor outer segment membrane, J Biol Chem, 275, 29354, 10.1074/jbc.M910191199
Mata, 2000, Biosynthesis of a major lipofuscin fluorophore in mice and humans with ABCR-mediated retinal and macular degeneration, Proc Natl Acad Sci USA, 97, 7154, 10.1073/pnas.130110497
Chen, 2012, Reduction of all-trans-retinal in vertebrate rod photoreceptors requires the combined action of RDH8 and RDH12, J Biol Chem, 287, 24662, 10.1074/jbc.M112.354514
Maeda, 2005, Role of photoreceptor-specific retinol dehydrogenase in the retinoid cycle in vivo, J Biol Chem, 280, 18822, 10.1074/jbc.M501757200
Rattner, 2000, Identification and characterization of all-trans-retinol dehydrogenase from photoreceptor outer segments, the visual cycle enzyme that reduces all-trans-retinal to all-trans-retinol, J Biol Chem, 275, 11034, 10.1074/jbc.275.15.11034
Futterman, 1970, Metabolism of glucose and reduction of retinaldehyde in retinal photoreceptors, J Neurochem, 17, 149, 10.1111/j.1471-4159.1970.tb02195.x
Adler, 2014, Mitochondria contribute to NADPH generation in mouse rod photoreceptors, J Biol Chem, 289, 1519, 10.1074/jbc.M113.511295
Palczewski, 1994, Rod outer segment retinol dehydrogenase: substrate specificity and role in phototransduction, Biochemistry, 33, 13741, 10.1021/bi00250a027
Chrispell, 2009, Rdh12 activity and effects on retinoid processing in the murine retina, J Biol Chem, 284, 21468, 10.1074/jbc.M109.020966
Ablonczy, 2013, Lack of correlation between the spatial distribution of A2E and lipofuscin fluorescence in the human retinal pigment epithelium, Invest Ophthalmol Vis Sci, 54, 5535, 10.1167/iovs.13-12250