The 1.59Å resolution structure of the minor pseudopilin EpsH of Vibrio cholerae reveals a long flexible loop
Tài liệu tham khảo
Pohlschroder, 2005, Diversity and evolution of protein translocation, Annu. Rev. Microbiol., 59, 91, 10.1146/annurev.micro.59.030804.121353
Papanikou, 2007, Bacterial protein secretion through the translocase nanomachine, Nat. Rev. Microbiol., 5, 839, 10.1038/nrmicro1771
Sargent, 2007, The twin-arginine transport system: moving folded proteins across membranes, Biochem. Soc. Trans., 35, 835, 10.1042/BST0350835
Filloux, 2004, The underlying mechanisms of type II protein secretion, Biochim. Biophys. Acta, 1694, 163, 10.1016/j.bbamcr.2004.05.003
Sandkvist, 2001, Type II secretion and pathogenesis, Infect. Immun., 69, 3523, 10.1128/IAI.69.6.3523-3535.2001
Sandkvist, 2001, Biology of type II secretion, Mol. Microbiol., 40, 271, 10.1046/j.1365-2958.2001.02403.x
Sikora, 2011, Proteomic analysis of the Vibrio cholerae type II secretome reveals new proteins, including three related serine proteases, J. Biol. Chem., 286, 16555, 10.1074/jbc.M110.211078
Douzi, 2012, On the path to uncover the bacterial type II secretion system, Philos. Trans. R. Soc. Lond. B Biol. Sci., 367, 1059, 10.1098/rstb.2011.0204
Campos, 2013, The type II secretion system—a dynamic fiber assembly nanomachine, Res. Microbiol., 164, 545, 10.1016/j.resmic.2013.03.013
McLaughlin, 2012, Structural insights into the type II secretion nanomachine, Curr. Opin. Struct. Biol., 22, 208, 10.1016/j.sbi.2012.02.005
Korotkov, 2012, The type II secretion system: biogenesis, molecular architecture and mechanism, Nat. Rev. Microbiol., 10, 336, 10.1038/nrmicro2762
Sandkvist, 1997, General secretion pathway (eps) genes required for toxin secretion and outer membrane biogenesis in Vibrio cholerae, J. Bacteriol., 179, 6994, 10.1128/jb.179.22.6994-7003.1997
Peabody, 2003, Type II protein secretion and its relationship to bacterial type IV pili and archaeal flagella, Microbiology, 149, 3051, 10.1099/mic.0.26364-0
Campos, 2010, Detailed structural and assembly model of the type II secretion pilus from sparse data, Proc. Natl. Acad. Sci. U. S. A., 107, 13081, 10.1073/pnas.1001703107
Marsh, 1998, Identification of the Vibrio cholerae type 4 prepilin peptidase required for cholera toxin secretion and pilus formation, Mol. Microbiol., 29, 1481, 10.1046/j.1365-2958.1998.01031.x
Hobbs, 1993, Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes, Mol. Microbiol., 10, 233, 10.1111/j.1365-2958.1993.tb01949.x
Nunn, 1999, Bacterial type II protein export and pilus biogenesis: more than just homologies?, Trends Cell Biol., 9, 402, 10.1016/S0962-8924(99)01634-7
Shevchik, 1997, Specific interaction between OutD, an Erwinia chrysanthemi outer membrane protein of the general secretory pathway, and secreted proteins, EMBO J., 16, 3007, 10.1093/emboj/16.11.3007
Durand, 2003, Type II protein secretion in Pseudomonas aeruginosa: the pseudopilus is a multifibrillar and adhesive structure, J. Bacteriol., 185, 2749, 10.1128/JB.185.9.2749-2758.2003
Durand, 2011, The assembly mode of the pseudopilus: a hallmark to distinguish a novel secretion system subtype, J. Biol. Chem., 286, 24407, 10.1074/jbc.M111.234278
Kohler, 2004, Structure and assembly of the pseudopilin PulG, Mol. Microbiol., 54, 647, 10.1111/j.1365-2958.2004.04307.x
Yanez, 2008, Structure of the minor pseudopilin EpsH from the type 2 secretion system of Vibrio cholerae, J. Mol. Biol., 377, 91, 10.1016/j.jmb.2007.08.041
Craig, 2003, Type IV pilin structure and assembly. X-ray and EM analyses of Vibrio cholerae toxin-coregulated pilus and Pseudomonas aeruginosa PAK pilin, Mol. Cell, 11, 1139, 10.1016/S1097-2765(03)00170-9
Keizer, 2001, Structure of a pilin monomer from Pseudomonas aeruginosa: implications for the assembly of pili, J. Biol. Chem., 276, 24186, 10.1074/jbc.M100659200
Parge, 1995, Structure of the fibre-forming protein pilin at 2.6 A resolution, Nature, 378, 32, 10.1038/378032a0
Korotkov, 2008, Structure of the GspK-GspI-GspJ complex from the enterotoxigenic Escherichia coli type 2 secretion system, Nat. Struct. Mol. Biol., 15, 462, 10.1038/nsmb.1426
Reichow, 2010, Structure of the cholera toxin secretion channel in its closed state, Nat. Struct. Mol. Biol., 17, 1226, 10.1038/nsmb.1910
Douzi, 2009, The XcpV/GspI pseudopilin has a central role in the assembly of a quaternary complex within the T2SS pseudopilus, J. Biol. Chem., 284, 34580, 10.1074/jbc.M109.042366
Kuo, 2005, Roles of the minor pseudopilins, XpsH, XpsI and XpsJ, in the formation of XpsG-containing pseudopilus in Xanthomonas campestris pv. campestris, J. Biomed. Sci., 12, 587, 10.1007/s11373-005-7372-3
Cisneros, 2011, Minor pseudopilin self-assembly primes type II secretion pseudopilus elongation, EMBO J., 31, 1041, 10.1038/emboj.2011.454
Douzi, 2011, Deciphering the Xcp Pseudomonas aeruginosa type II secretion machinery through multiple interactions with substrates, J. Biol. Chem., 286, 40792, 10.1074/jbc.M111.294843
Hazes, 2000, Crystal structure of Pseudomonas aeruginosa PAK pilin suggests a main- chain-dominated mode of receptor binding, J. Mol. Biol., 299, 1005, 10.1006/jmbi.2000.3801
Raghunathan, 2009, Expression, purification, crystallization and preliminary X-ray studies of Vibrio cholerae pseudopilin EpsH, Acta Crystallogr. F, 65, 702, 10.1107/S1744309109020454
Sandkvist, 1994, 293
Hirel, 1989, Extent of N-terminal methionine excision from Escherichia coli proteins is governed by the side-chain length of the penultimate amino acid, Proc. Natl. Acad. Sci. U. S. A., 86, 8247, 10.1073/pnas.86.21.8247
Otwinowski, 1997, 307, 10.1016/S0076-6879(97)76066-X
Matthews, 1968, Solvent content of protein crystals, J. Mol. Biol., 33, 491, 10.1016/0022-2836(68)90205-2
Vagin, 1997, MOLREP: an automated program for molecular replacement, J. Appl. Crystallogr., 30, 1022, 10.1107/S0021889897006766
Langer, 2008, Automated macromolecular model building for X-ray crystallography using ARP/wARP version 7, Nat. Protoc., 3, 1171, 10.1038/nprot.2008.91
Emsley, 2010, Features and development of Coot, Acta Crystallogr. D, 66, 486, 10.1107/S0907444910007493
Murshudov, 1997, Refinement of macromolecular structures by the maximum-likelihood method, Acta Crystallogr. D, 53, 240, 10.1107/S0907444996012255
N. Collaborative Computational Project, 1994, The CCP4 suite: programs for protein crystallography, Acta Crystallogr. D, 50, 760, 10.1107/S0907444994003112
Winn, 2001, Use of TLS parameters to model anisotropic displacements in macromolecular refinement, Acta Crystallogr. D, 57, 122, 10.1107/S0907444900014736
Painter, 2006, TLSMD web server for the generation of multi-group TLS models, J. Appl. Crystallogr., 39, 109, 10.1107/S0021889805038987
Chen, 2010, MolProbity: all-atom structure validation for macromolecular crystallography, Acta Crystallogr. D Biol. Crystallogr., 66, 12, 10.1107/S0907444909042073
Kabsch, 1983, Dictionary of protein secondary structure: pattern recognition of hydrogen-bonded and geometrical features, Biopolymers, 22, 2577, 10.1002/bip.360221211
Poirot, 2004, 3DCoffee@igs: a web server for combining sequences and structures into a multiple sequence alignment, Nucleic Acids Res., 32, W37, 10.1093/nar/gkh382
Shi, 2001, FUGUE: sequence-structure homology recognition using environment-specific substitution tables and structure-dependent gap penalties, J. Mol. Biol., 310, 243, 10.1006/jmbi.2001.4762
Bond, 2009, ALINE: a WYSIWYG protein-sequence alignment editor for publication-quality alignments, Acta Crystallogr. D, 65, 510, 10.1107/S0907444909007835
Bond, 2003, TopDraw: a sketchpad for protein structure topology cartoons, Bioinformatics, 19, 311, 10.1093/bioinformatics/19.2.311
The PyMol Molecular Graphics System, Version 1.5.0.3, Schrödinger, LLC.
McNicholas, 2011, Presenting your structures: the CCP4mg molecular-graphics software, Acta Crystallogr. D, 67, 386, 10.1107/S0907444911007281
Kirn, 2000, Delineation of pilin domains required for bacterial association into microcolonies and intestinal colonization by Vibrio cholerae, Mol. Microbiol., 35, 896, 10.1046/j.1365-2958.2000.01764.x
Craig, 2006, Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions, Mol. Cell, 23, 651, 10.1016/j.molcel.2006.07.004
Li, 2008, Vibrio cholerae toxin-coregulated pilus structure analyzed by hydrogen/deuterium exchange mass spectrometry, Structure, 16, 137, 10.1016/j.str.2007.10.027
Debroy, 2006, Legionella pneumophila Mip, a surface-exposed peptidylproline cis-trans-isomerase, promotes the presence of phospholipase C-like activity in culture supernatants, Infect. Immun., 74, 5152, 10.1128/IAI.00484-06
Vignon, 2003, Type IV-like pili formed by the type II secreton: specificity, composition, bundling, polar localization, and surface presentation of peptides, J. Bacteriol., 185, 3416, 10.1128/JB.185.11.3416-3428.2003
Durand, 2005, XcpX controls biogenesis of the Pseudomonas aeruginosa XcpT-containing pseudopilus, J. Biol. Chem., 280, 31378, 10.1074/jbc.M505812200
Dunker, 2008, The unfoldomics decade: an update on intrinsically disordered proteins, BMC Genomics, 9, S1, 10.1186/1471-2164-9-S2-S1