The αVG model for multivariate asset pricing: calibration and extension

Florence Guillaume1
1Department of Mathematics, Catholic University of Leuven, Leuven, Belgium

Tóm tắt

Từ khóa


Tài liệu tham khảo

Ané T., Geman H. (2000) Order flow, transaction clock, and normality of asset returns. The Journal of Finance 5: 2259–2284

Ballotta, L. (2008). A note on multivariate asset models using Lévy processes. Working paper, Cass Business School.

Black, F. (1975). Fact and fantasy in the use of options. Financial Analyst Journal, 31, 36–41, 61–72.

Carr P., Madan D. B. (1998) Option valuation using the fast Fourier transform. Journal of Computational Finance 2: 61–73

Carr P., Geman H., Madan D. B., Yor M. (2003) Stochastic volatility for Lévy processes. Mathematical Finance 13-3: 345–382

Chicago Board Options Exchange. (2009). CBOE S&P 500 implied correlation index. Working paper, Chicago.

Clark P. K. (1973) A subordinated stochastic process model with finite variance for speculative prices. Econometrica 41-1: 135–155

Detlefsen K., Hrdle W. K. (2007) Calibration risk for exotic options. The Journal of Derivatives 14: 47–63

Eberlein E., Madan D. B. (2010) On correlating Lvy processes. The Journal of Risk 13-1: 3–16

Finlay R., Seneta E. (2008) Option pricing with VG-like models. International Journal of Theoretical and Applied Finance 11-8: 943–955

Guillaume, F. (2011). The generalized αVG model. To appear in M. Vanmaele et al. (Eds.), Proceedings: Actuarial and financial mathematics conference 2011 (AFMATH 2011, Brussels, Belgium, 10–11 Feb 2011).

Guillaume F. (2012) Sato two factor models for multivariate option pricing. To appear in Journal of Computational Finance 15(4): 159–192

Harris L. (1986) Cross-security tests of the mixture of distributions hypothesis. Journal of Financial and Quantitative analysis 21-1: 39–46

Kawai R. (2009) A multivariate Lévy process model with linear correlation. Quantitative Finance 9:5: 597–606

Leoni, P., & Schoutens, W. (2008). Multivariate smiling. Wilmott magazine

Lo A. W., Wang J. (2000) Trading volume: Definitions, data analysis, and implications of portfolio theory. The Review of Financial Studies 13-2: 257–300

Luciano E., Schoutens W. (2006) A multivariate jump-driven financial asset model. Quantitative Finance 6: 385–402

Luciano E., Semeraro P. (2010) Multivariate time changes for Lévy asset models: Characterization and calibration. Journal of Computational and Applied Mathematics 233: 1937–1953

Madan D. B. (2011) Joint risk-neutral laws and hedging. IIE Transactions 43-12: 840–850

Madan D. B., Seneta E. (1990) The variance gamma (V.G.) model for share market returns. Journal of Business 63: 511–524

Schoutens W. (2003) Lévy processes in finance: Pricing financial derivatives. Wiley, New York

Semeraro P. (2008) A multivariate variance gamma model for financial applications. International Journal of Theoretical and Applied Finance 11: 1–18

Skintzi V. D., Refenes A.-P. N. (2005) Implied correlation index: A new measure of divesification. Journal of Futures Markets 25-2: 171–197