Texturing behaviours of (K0.47Na0.51Li0.02)(Nb0.8Ta0.2)O3 piezoelectric ceramics produced using NaNb1-xTaxO3 templates
Tài liệu tham khảo
Saito, 2004, Lead-free piezoceramics, Nature, 432, 84, 10.1038/nature03028
Kim, 2017, Strategies of a potential importance, making lead-free piezoceramics truly alternative to PZTs, J. Korean Ceram. Soc., 54, 86, 10.4191/kcers.2017.54.2.12
Kimura, 2006, Application of texture engineering to piezoelectric ceramics, J. Ceram. Soc. Jpn., 114, 15, 10.2109/jcersj.114.15
Gao, 2007, Microstructure and piezoelectric properties of textured (Na0.84K0.16)0.5Bi0.5TiO3 lead-free ceramics, J. Eur. Ceram. Soc., 27, 3453, 10.1016/j.jeurceramsoc.2007.01.015
Hussian, 2010, Anisotropic electrical properties of Bi0.5(Na0.75K0.25)0.5TiO3 ceramics fabricated by reactive templated grain growth (RTGG), Current Appl. Phys., 10, 305, 10.1016/j.cap.2009.06.013
Kimura, 2004, Preparation of crystallographically textured Bi0. 5Na0. 5TiO3–BaTiO3 ceramics by reactive-templated grain growth method, Ceram. Int., 30, 1161, 10.1016/j.ceramint.2003.12.011
Kimura, 2004, Crystallographic texture development in bismuth sodium titanate prepared by reactive-templated grain growth method, J. Am. Ceram. Soc., 87, 1424, 10.1111/j.1551-2916.2004.01424.x
Kim, 2011, Large electric-field-induced strain in the textured Bi0.5(Na,K)0.5TiO3–BiAlO3 ceramics
Cha, 2017, Mechanism of Bi0.5Na0.5TiO3 and Bi4.5Na0.5Ti4O15 template synthesis during topochemical microcrystal conversion and texturing of Bi0.5(Na0.8K0.2) 0.5TiO3 piezoelectric ceramics, J. Eur. Ceram. Soc., 37, 967, 10.1016/j.jeurceramsoc.2016.10.016
Zhao, 2009, Fabrication of Na0. 5Bi0. 5TiO3-BaTiO3-textured ceramics templated by plate-like Na0. 5Bi0. 5TiO3 particles, J. Am. Ceram. Soc., 92, 1607, 10.1111/j.1551-2916.2009.03043.x
Fancher, 2014, Effect of texture on temperature-dependent properties of K0.5Na0.5NbO3-Modified Bi1/2Na1/2TiO3–xBaTiO3, J. Am. Ceram. Soc., 97, 2557, 10.1111/jace.12986
Sabolsky, 2001, Piezoelectric properties of <001> textured Pb(Mg1/3Mn2/3)O3–PbTiO3 ceramics, Appl. Phys. Lett., 78, 2551, 10.1063/1.1367291
Kwon, 2005, High strain, <001> textured 0.675Pb(Mg1/3Mn2/3)O3–0.325PbTiO3 ceramics: templated grain growth and piezoelectric properties, J. Am. Ceram. Soc., 88, 312, 10.1111/j.1551-2916.2005.00057.x
Chang, 2015, Enhanced electromechanical properties and phase transition temperatures in [001] textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Mn2/3)O3–PbTiO3 ternary ceramics, Appl. Phys. Lett., 107, 082902, 10.1063/1.4929688
Chang, 2016, Formation mechanism of highly [001]C textured Pb(In1/2Nb1/2)O3–Pb(Mg1/3Mn2/3)O3–Pb(Mg1/3Mn2/3)O3 PbTiO3 relaxor ferroelectric ceramics with giant piezoelectricity, J. Eur. Ceram. Soc., 36, 1973, 10.1016/j.jeurceramsoc.2016.02.030
Richter, 2008, Textured PMN–PT and PMN–PZT, J. Am. Ceram. Soc., 91, 929, 10.1111/j.1551-2916.2007.02216.x
Kimura, 2010, Mechanisms of texture development in lead-free piezoelectric ceramics with perovskite structure made by the templated grain growth process, Materials, 3, 4965, 10.3390/ma3114965
Cho, 2013, Piezoelectric and ferroelectric properties of textured (Na0.50K0.47Li0.03)(Nb0.8Ta0.2)O3 ceramics by using template grain growth method, J. Electroceram., 30, 72, 10.1007/s10832-012-9721-8
Chang, 2009, <001> textured (K0.5Na0.5)(Nb0.97Sb0.03)O3 piezoelectric ceramics with high electromechanical coupling over a broad temperature range, Appl. Phys. Lett., 95, 232905, 10.1063/1.3271682
Chang, 2010, Microstructure development and piezoelectric properties of highly textured CuO-doped KNN by templated grain growth, J. Mater. Res., 25, 687, 10.1557/JMR.2010.0084
Chang, 2011, Enhanced electromechanical properties and temperature stability of textured (K0.5Na0.5)NbO3-based piezoelectric ceramics, J. Am. Ceram. Soc., 94, 2494, 10.1111/j.1551-2916.2011.04393.x
Tutuncu, 2012, In situ observations of templated grain growth in (Na0. 5K0. 5)0. 98Li0. 02NbO3 piezoceramics: texture development and template–matrix interactions, J. Am. Ceram. Soc., 95, 2653, 10.1111/j.1551-2916.2012.05268.x
Lotgering, 1959, Topotactical reactions with ferrimagnetic oxides having hexagonal crystal structures-I, J. Inorg. Nucl. Chem., 9, 113, 10.1016/0022-1902(59)80070-1
Li, 2018, Mechanism of significantly enhanced piezoelectric performance and stability in textured potassium-sodium niobate piezoelectric ceramics, J. Eur. Ceram. Soc., 38, 75, 10.1016/j.jeurceramsoc.2017.07.017
Liu, 2017, Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-Oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering, ACS AppL. Mater. Interfaces, 9, 29863, 10.1021/acsami.7b08160
Yan, 2017, Giant piezoelectric voltage coefficient in grain-oriented modified PbTiO3 material, Nat. Commun.
Ahn, 2017, Forced electrostriction by constraining polarization switching enhances the electromechanical strain properties of incipient piezoceramics, NPG Asia Mater., 9, e346, 10.1038/am.2016.210
Bai, 2017, NaNbO3 templates-induced phase evolution and enhancement of electromechanical properties in <00l> grain oriented lead-free BNT-based piezoelectric materials, J. Eur. Ceram. Soc., 37, 2591, 10.1016/j.jeurceramsoc.2017.02.048
Maurya, 2015, Giant strain with ultra-low hysteresis and high temperature stability in grain oriented lead-free K0. 5Bi0. 5TiO3–BaTiO3–Na0. 5Bi0. 5TiO3 piezoelectric materials, Sci. Rep., 5, 8595, 10.1038/srep08595
Bai, 2015, Effect of different templates on structure evolution and large strain response under a low electric field in <00l>-textured lead-free BNT-based piezoelectric ceramics, J. Eur. Ceram. Soc., 35, 2489, 10.1016/j.jeurceramsoc.2015.03.016