Texture image classification with discriminative neural networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Leung T.; Malik J. Representing and recognizing the visual appearance of materials using three-dimensional textons. International Journal of Computer Vision Vol. 43, No. 1, 29–44, 2001.
Varma M.; Garg R. Locally invariant fractal features for statistical texture classification. In: Proceedings of IEEE 11th International Conference on Computer Vision, 1–8, 2007.
Malik J.; Belongie S.; Leung T.; Shi J. Contour and texture analysis for image segmentation. International Journal of Computer Vision Vol. 43, No. 1, 7–27, 2001.
Lazebnik S.; Schmid C.; Ponce J. A sparse texture representation using local affine regions. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 27, No. 8, 1265–1278, 2005.
Zhang J.; Marszalek M.; Lazebnik S.; Schmid C. Local features and kernels for classification of texture and object categories: A comprehensive study. International Journal of Computer Vision Vol. 73, No. 2, 213–238, 2007.
Liu L.; Fieguth P.; Kuang G.; Zha H. Sorted random projections for robust texture classification. In: Proceedings of International Conference on Computer Vision, 391–398, 2011.
Timofte R.; Van Gool L. A training-free classification framework for textures, writers, and materials. In: Proceedings of the 23rd British Machine Vision Conference, Vol. 13, 14, 2012.
Sharma G.; ul Hussain S.; Jurie F. Local higherorder statistics (LHS) for texture categorization and facial analysis. In: Computer Vision—ECCV 2012. Fitzgibbon A.; Lazebnik S.; Perona P.; Sato Y.; Schmid C. Eds. Springer Berlin Heidelberg, 1–12, 2012.
Cimpoi M.; Maji S.; Kokkinos I.; Mohamed S.; Vedaldi A. Describing textures in the wild. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3606–3613, 2014.
Lowe D.G. Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision Vol. 60, No. 2, 91–110, 2004.
Ojala T.; Pietikainen M.; Maenpaa T. Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 24, No. 7, 971–987, 2002.
Sharan L.; Liu C.; Rosenholtz R.; Adelson E.H. Recognizing materials using perceptually inspired features. International Journal of Computer Vision Vol. 103, No. 3, 348–371, 2013.
Quan Y.; Xu Y.; Sun Y.; Luo Y. Lacunarity analysis on image patterns for texture classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 160–167, 2014.
Crosier M.; Griffin L.D. Using basic image features for texture classification. International Journal of Computer Vision Vol. 88, No. 3, 447–460, 2010.
Xu Y.; Ji H.; Fermüller C. Viewpoint invariant texture description using fractal analysis. International Journal of Computer Vision Vol. 83, No. 1, 85–100, 2009.
Krizhevsky A.; Sutskever I.; Hinton G.E. Imagenet classification with deep convolutional neural networks. In: Proceedings of Advances in Neural Information Processing Systems, 1097–1105, 2012.
Song Y.; Cai W.; Li Q.; Zhang F.; Feng D.; Huang H. Fusing subcategory probabilities for texture classification. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 4409–4417, 2015.
Cimpoi M.; Maji S.; Vedaldi A. Deep filter banks for texture recognition and segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 3828–3836, 2015.
Lin T.Y.; Maji S. Visualizing and understanding deep texture representations. arXiv preprint arXiv:1511.05197, 2015.
Simonyan K.; Zisserman A. Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556, 2014.
Van der MLJP P.E.O.; van den HH J. Dimensionality reduction: A comparative review. Tilburg, Netherlands: Tilburg Centre for Creative Computing, Tilburg University, Technical Report: 2009-005, 2009.
Cunningham J.P.; Ghahramani Z. Linear dimensionality reduction: Survey, insights, and generalizations. Journal of Machine Learning Research Vol. 16, 2859–2900, 2015.
Hinton G.E.; Salakhutdinov R.R. Reducing the dimensionality of data with neural networks. Science Vol. 313, No. 5786, 504–507, 2006.
Wang W.; Huang Y.; Wang Y.; Wang L. Generalized autoencoder: A neural network framework for dimensionality reduction. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, 490–497, 2014.
Wang Y.; Yao H.; Zhao S. Auto-encoder based dimensionality reduction. Neurocomputing Vol. 184, 232–242, 2016.
Caputo B.; Hayman E.; Mallikarjuna P. Classspecific material categorization. In: Proceedings of the 10th IEEE International Conference on Computer Vision, Vol. 1, 1597–1604, 2005.
Sharan L.; Rosenholtz R.; Adelson E. Material perception: What can you see in a brief glance? Journal of Vision Vol. 9, No. 8, 784, 2009.
Perronnin F.; Sánchez J.; Mensink T. Improving the fisher kernel for large-scale image classification. In: Computer Vision—ECCV 2010. Daniilidis K.; Maragos P.; Paragios N. Eds. Springer Berlin Heidelberg, 143–156, 2010.
Svozil D.; Kvasnicka V.; Pospichal J. Introduction to multi-layer feed-forward neural networks. Chemometrics and Intelligent Laboratory Systems Vol. 39, No. 1, 43–62, 1997.
Vedaldi A.; Lenc K. Matconvnet: Convolutional neural networks for MATLAB. In: Proceedings of the 23rd ACM International Conference on Multimedia, 689–692, 2015.
Vedaldi A.; Fulkerson B. VLFeat: An open and portable library of computer vision algorithms. In: Proceedings of the 18th ACM International Conference on Multimedia, 1469–1472, 2010.
Chang C.-C.; Lin C.-J. LIBSVM: A library for support vector machines. ACM Transactions on Intelligent Systems and Technology Vol. 2, No. 3, Article No. 27, 2011.