Các đồ thị Cayley tứ phân cạnh chuyển vị của các nhóm Frobenius

Springer Science and Business Media LLC - Tập 53 - Trang 527-551 - 2021
Lei Wang1, Yin Liu2, Yanxiong Yan3
1School of Mathematics and Statistics, Yunnan University, Kunming, People’s Republic of China
2Department of Mathematics, Yunnan Normal University, Kunming, People’s Republic of China
3School of Mathematics and Statistics, Southwest University, Chongqing, People’s Republic of China

Tóm tắt

Trong bài báo này, chúng tôi đưa ra một đặc điểm cho một lớp đồ thị Cayley chuyển vị theo cạnh và cung cấp một phương pháp để xây dựng các đồ thị chuyển vị theo cạnh với bậc 4 có ổ đĩa đỉnh lớn một cách tùy ý. Đặc biệt, trong phần cuối, chúng tôi thu được một số mở rộng của các kết quả của Li và cộng sự (Các đồ thị Cayley tứ phân cạnh chuyển vị với số đỉnh lẻ, Tạp chí Suy diễn Tổ hợp Seri B 96:164–181, 2006) về các đồ thị nửa chuyển vị.

Từ khóa

#đồ thị Cayley #tứ phân cạnh #chuyển vị #nhóm Frobenius #ổ đĩa đỉnh

Tài liệu tham khảo

Al-bar, J.A., Al-kenani, A.N., Muthana, N.M., Praeger, C.E., Spiga, P.: Finite edge-transitive oriented graphs of valency four: a global approach. Electron. J. Comb. 23, 1–10 (2016) Baik, Y.G., Feng, Y.Q., Sim, H.S., Xu, M.Y.: On the normality of Cayley graphs of abelian groups. Algebra Colloq. 5, 297–304 (1998) Bosma, W., Cannon, C., Playoust, C.: The Magma algebra system I: the user language. J. Symb. Comput. 24, 235–265 (1997) Conway, J.H., Curtis, R.T., Norton, S.P., Parker, R.A., Wilson, P.: Atlas of Finite Groups. Oxford University Press, Oxford (1985) Corr, B.P., Praeger, C.E.: Normal edge-transitive Cayley graphs of Frobenius groups. J. Algebr. Comb. 42, 803–827 (2015) Detinko, A.S., Flannery, D.L.: Nilpotent primitive linear groups over finite fields. Commun. Algebra. 33, 497–505 (2005) Dixon, J.D., Mortimer, B.: Permutation Groups. Springer, New York (1996) Doerk, K., Hawkes, T.: Finite Soluble Groups. Walter de Gruyter Co., Berlin (1992) Du, S.F., Xu, W.Q.: \(2\)-arc-transitive regular covers of \({ K}_{n, n}-n{ K}_2\) having the covering transformation group \({\mathbb{Z}}_p^3\). J. Aust. Math. Soc. 101, 145–170 (2016) Fang, X.G., Li, C.H., Xu, M.Y.: On edge-transitive Cayley graphs of valency four. Eur. J. Comb. 25, 1107–1116 (2004) Feng, Y.Q., Kwak, J.H., Wang, X.Y., Zhou, J.X.: Tetravalent half-arc-transitive graphs of order \(2pq\). J. Algebr. Comb. 33, 543–553 (2011) Feng, Y.Q., Kwak, J.H., Xu, M.Y., Zhou, J.X.: Tetravalent half-arc-transitive graphs of order \(p^4\). Eur. J. Comb. 29, 555–567 (2008) Godsil, C.D.: On the full automorphism group of a graph. Combinatorica 1, 243–256 (1981) Gorenstein, D.: Finite Groups. Harper and Row, New York (1968) Gorenstein, D.: Finite Simple Groups. Plenum Press, New York (1982) Guralnick, R.: Subgroups of prime power index in a simple group. J. Algebra 81, 304–311 (1983) Kazarin, L.S.: Groups that can be represented as a product of two solvable subgroups. Commun. Algebra 14, 1001–1066 (1986) Kutnar, K., Marušič, D., Sp̌arl, P.: An infinite family of half-arc-transitive graphs with universal reachability relation. Eur. J. Comb. 31, 1725–1734 (2010) Kuzman, B.: Arc-transitive elementary abelian covers of the complete graph \( K_5\). Linear Algebra Appl. 433, 1909–1921 (2010) Li, C.H.: Finite \(s\)-arc transitive Cayley graphs and flag-transitive projective planes. Proc. Amer. Math. Soc. 133, 31–41 (2005) Li, C.H., Liu, Z., Lu, Z.P.: The edge-transitive tetravalent Cayley graphs of square-free order. Discrete Math. 312, 1952–1967 (2012) Li, C.H., Lu, Z.P., Zhang, H.: Tetravalent edge-transitive Cayley graphs with odd number of vertices. J. Comb. Theory Ser. B. 96, 164–181 (2006) Li, C.H., Pan, J.M., Song, S.J., Wang, D.J.: A characterization of a family of edge-transitive metacirculant graphs. J. Comb. Theory Ser. B. 107, 12–25 (2014) Li, C.H., Rao, G., Song, S.J.: On finite self-complementary metacirculants. J. Algebr. Comb. 40, 1135–1144 (2014) Li, C.H., Xia, B.Z.: Factorizations of almost simple groups with a solvable factor, and Cayley graphs of solvable groups, Mem. Amer. Math. Soc. (2020, in press) Liu, H.L., Wang, L.: Cubic arc-transitive Cayley graphs on Frobenius groups. J. Algebra Appl. 17, 1–9 (2018) Marušič, D., Nedela, R.: Maps and half-transitive graphs of valency \(4\). Eur. J. Comb. 19, 345–354 (1998) Marušič, D., Sp̌arl, P.: On quartic half-arc-transitive metacirculants. J. Algebr. Comb. 28, 365–395 (2008) Pan, J.M., Liu, Y., Huang, Z.H., Liu, C.L.: Tetravalent edge-transitive graphs of order \(p^2q\). Sci. China Math. 57(2), 293–302 (2014) Praeger, C.E.: An O’Nan-Scott theorem for finite quasiprimitive permutation groups and an application to \(2\)-arc transitive graphs. J. Lond. Math. Soc. 47, 227–239 (1992) Praeger, C.E.: Finite normal edge-transitive Cayley graphs. Bull. Aust. Math. Soc. 60(2), 207–220 (1999) Song, S.J., Li, C.H., Wang, D.J.: Classifying a family of edge-transitive metacirculant graphs. J. Algebr. Comb. 35, 497–513 (2012) Song, S.J., Li, C.H., Wang, D.J.: A family of edge-transitive Frobenius metacirculants of small valency. Eur. J. Comb. 34, 512–521 (2013) Suzuki, M.: Group Theory I. Springer, Berlin, New York (1982) Wang, X.Y., Feng, Y.Q.: Tetravalent half-edge-transitive graphs and non-normal Cayley graphs. J. Graph Theory 70(2), 197–213 (2012) Weiss, R.M.: \(s\)-transitive graphs. Algebr. Methods Graph Theory 2, 827–847 (1981) Xu, M.Y.: Half-transitive graphs of prime-cube order. J. Algebr. Comb. 1(3), 275–282 (1992) Xu, M.Y.: Automorphism groups and isomorphisms of Cayley digraphs. Discrete Math. 182, 309–319 (1998) Xu, W.Q., Zhu, Y.H., Du, S.F.: \(2\)-arc-transitive regular covers of \({ K}_{n, n}-n{ K}_2\) with the covering transformation group \({\mathbb{Z}}_p^2\). Ars Math. Contemp. 10, 269–280 (2016) Zhou, C.X., Feng, Y.Q.: An infinite family of tetravalent half-arc-transitive graphs. Discrete Math. 306, 2205–2211 (2006)