Tetravalent dengue DNA vaccine is not immunogenic when delivered by retrograde infusion into salivary glands
Tóm tắt
A tetravalent DNA vaccine for Dengue virus is under development but has not yet achieved optimal immunogenicity. Salivary glands vaccination has been reported efficacious in rodents and dogs. We report on a pilot study testing the salivary gland as a platform for a Dengue DNA vaccine in a non-human primate model. Four cynomolgus macaques were used in this study. Each macaque was pre-medicated with atropine and sedated with ketamine. Stensen’s duct papilla was cannulated with a P10 polyethylene tube, linked to a 500ul syringe. On the first two infusions, all macaques were infused with 300ul of TVDV mixed with 2 mg of zinc. For the 3rd infusion, to increase transfection into salivary tissue, two animals received 100uL TVDV mixed with 400uL polyethylenimine 1μg/ml (PEI) and the other two animals received 500uL TVDV with zinc. Antibody titers were assessed 4 weeks following the second and third infusion. SGRI through Stensen’s duct is a well-tolerated, simple and easy to reproduce procedure. TVDV infused into macaques salivary glands elicited a significantly weaker antibody response than with different delivery methods.
Tài liệu tham khảo
Sridhar S, Luedtke A, Langevin E, Zhu M, Bonaparte M, Machabert T, et al. Effect of dengue Serostatus on dengue vaccine safety and efficacy. N Engl J Med. 2018;379:327–40. https://doi.org/10.1056/NEJMoa1800820.
Thomas SJ, Endy TP. Critical issues in dengue vaccine development. Curr Opin Infect Dis. 2011;24:442–50 Available from: http://journals.lww.com/00001432-201110000-00008.
Wolff JA, Ludtke JJ, Acsadi G, Williams P, Jani A. Long-term persistence of plasmid DNA and foreign gone expression in mouse muscle. Hum Mol Genet. 1992;1:363–9. https://doi.org/10.1093/hmg/1.6.363.
Ulmer J, Donnelly J, Parker S, Rhodes G, Felgner P, Dwarki V, et al. Heterologous protection against influenza by injection of DNA encoding a viral protein. Science. 1993;259:1745–9. https://doi.org/10.1126/science.8456302.
Porter KR, Teneza-Mora N, Raviprakash K. Tetravalent DNA vaccine product as a vaccine candidate against dengue; 2014. p. 283–95. https://doi.org/10.1007/978-1-4939-0410-5_17.
Williams M, Ewing D, Blevins M, Sun P, Sundaram AK, Raviprakash KS, et al. Enhanced immunogenicity and protective efficacy of a tetravalent dengue DNA vaccine using electroporation and intradermal delivery. Vaccine. 2019;37:4444–53 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X19308710.
Sankar V, Baccaglini L, Sawdey M, Wheeler CJ, Pillemer SR, Baum BJ, et al. Salivary gland delivery of pDNA-cationic lipoplexes elicits systemic immune responses. Oral Dis. 2002;8:275–81 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12477057.
Tucker SN, Lin K, Stevens S, Scollay R, Bennett MJ, Olson DC. Salivary gland genetic vaccination: a scalable technology for promoting distal mucosal immunity and heightened systemic immune responses. Vaccine. 2004;22:2500–4 Available from: https://linkinghub.elsevier.com/retrieve/pii/S0264410X04002622.
Tucker SN, Lin K, Stevens S, Scollay R, Bennett MJ, Olson DC. Systemic and mucosal antibody responses following retroductal gene transfer to the salivary gland. Mol Ther. 2003;8:392–9 Available from: https://linkinghub.elsevier.com/retrieve/pii/S1525001603001801.
Danko JR, Kochel T, Teneza-Mora N, Luke TC, Raviprakash K, Sun P, et al. Safety and immunogenicity of a tetravalent dengue DNA vaccine administered with a cationic lipid-based adjuvant in a phase 1 clinical trial. Am J Trop Med Hyg. 2018;98:849–56. https://doi.org/10.4269/ajtmh.17-0416.
O’Connell AC, Lillibridge CD, Zheng C, Baum BJ, O’Connell BC, Ambudkar IS. γ-Irradiation-induced cell cycle arrest and cell death in a human submandibular gland cell line: Effect of E2F1 expression. J Cell Physiol. 1998;177:264–73. https://doi.org/10.1002/%28SICI%291097-4652%28199811%29177%3A2%3C264%3A%3AAID-JCP8%3E3.0.CO%3B2-L.
Baum BJ, Alevizos I, Zheng C, Cotrim AP, Liu S, McCullagh L, et al. Early responses to adenoviral-mediated transfer of the aquaporin-1 cDNA for radiation-induced salivary hypofunction. Proc Natl Acad Sci. 2012;109:19403–7. https://doi.org/10.1073/pnas.1210662109.
O’Connell AC, Baccaglini L, Fox PC, O’Connell BC, Kenshalo D, Oweisy H, et al. Safety and efficacy of adenovirus-mediated transfer of the human aquaporin-1 cDNA to irradiated parotid glands of non-human primates. Cancer Gene Ther. 1999;6:505–13 Available from: http://www.nature.com/articles/7700078.
Voutetakis A, Zheng C, Metzger M, Cotrim AP, Donahue RE, Dunbar CE, et al. Sorting of transgenic secretory proteins in rhesus macaque parotid glands after adenovirus-mediated gene transfer. Hum Gene Ther. 2008;19:1401–5. https://doi.org/10.1089/hum.2008.034.
Ponzio TA, Sanders JW. The salivary gland as a target for enhancing immunization response. Trop Dis Travel Med Vaccines. 2017;3:4. https://doi.org/10.1186/s40794-017-0047-z.
Baum BJ, Alevizos I, Chiorini JA, Cotrim AP, Zheng C. Advances in salivary gland gene therapy – oral and systemic implications. Expert Opin Biol Ther. 2015;15:1443–54. https://doi.org/10.1517/14712598.2015.1064894.
Wang Z, Zourelias L, Wu C, Edwards PC, Trombetta M, Passineau MJ. Ultrasound-assisted nonviral gene transfer of AQP1 to the irradiated minipig parotid gland restores fluid secretion. Gene Ther. 2015;22:739–49 Available from: http://www.nature.com/articles/gt201536.
Passineau MJ, Zourelias L, Machen L, Edwards PC, Benza RL. Ultrasound-assisted non-viral gene transfer to the salivary glands. Gene Ther. 2010;17:1318–24 Available from: http://www.nature.com/articles/gt201086.
Voutetakis A, Zheng C, Mineshiba F, Cotrim AP, Goldsmith CM, Schmidt M, et al. Adeno-Associated Virus Serotype 2-Mediated Gene Transfer to The Parotid Glands of Nonhuman Primates. Hum Gene Ther. 2007;18:142–50. https://doi.org/10.1089/hum.2006.154.
Shai E, Falk H, Honigman A, Panet A, Palmon A. Gene transfer mediated by different viral vectors following direct cannulation of mouse submandibular salivary glands. Eur J Oral Sci. 2002;110:254–60 Available from: http://www.ncbi.nlm.nih.gov/pubmed/12120712.