Testing slope effect on flow resistance equation for mobile bed rills

Hydrological Processes - Tập 32 Số 5 - Trang 664-671 - 2018
Costanza Di Stefano1, Vito Ferro2, Vincenzo Palmeri1, Vincenzo Pampalone1
1Department of Agricultural, Food and Forest Sciences, University of Palermo, Viale delle Scienze, Building 4, Palermo 90128, Italy
2Department of Earth and Marine Science, University of Palermo, Via Archirafi 20, Palermo, 90123 Italy

Tóm tắt

AbstractIn this paper, a recently theoretically deduced rill flow resistance equation, based on a power‐velocity profile, is tested experimentally on plots of varying slopes in which mobile bed rills are incised. Initially, measurements of flow velocity, water depth, cross‐sectional area, wetted perimeter and bed slope conducted in 106 reaches of rills incised on an experimental plot having a slope of 14% were used to calibrate the flow resistance equation. Then, the relationship between the velocity profile parameter Γ, the channel slope, and the flow Froude number, which was calibrated using the 106 rill reach data, was tested using measurements carried out in plots having slopes of 22% and 9%. The measurements carried out in the latter slope conditions confirmed that (a) the Darcy–Weisbach friction factor can be accurately estimated using the proposed theoretical approach, and (b) the data were supportive of the slope independence hypothesis of rill velocity stated by Govers.

Từ khóa


Tài liệu tham khảo

10.1002/(SICI)1096-9837(199601)21:1<35::AID-ESP539>3.0.CO;2-T

Bagarello V., 2015, Establishing a soil loss threshold for limiting rilling, Journal of Hydrologic Engineering, ASCE, 20, 10.1061/(ASCE)HE.1943-5584.0001056

10.1002/hyp.1318

10.1016/j.biosystemseng.2009.12.015

10.1002/(SICI)1096-9837(199708)22:8<759::AID-ESP779>3.0.CO;2-M

Baiamonte G., 1995, Advances on velocity profile and flow resistance law in gravel bed rivers, Excerpta, 9, 41

10.1007/978-1-4615-8570-1

Barenblatt G. I., 1987, Dimensional analysis

Barenblatt G. I., 1991, On the scaling laws (incomplete self‐similarity with respect to Reynolds numbers) for the developed turbulent flows in tubes, Comptes Rendus de l' Academie des Sciences Serie II, 313, 307

10.1017/S0022112093000874

10.1007/BF00281157

10.1017/S0022112093000886

10.1002/esp.1544

10.1016/0167-2789(90)90035-N

10.1016/j.catena.2017.04.023

10.1002/hyp.11221

10.1002/hyp.11048

Di Stefano C., 2015, Modeling rill erosion at the Sparacia experimental area, Journal of Hydrologic Engineering, ASCE, 20, 10.1061/(ASCE)HE.1943-5584.0001057

10.1016/j.catena.2012.10.012

10.1061/(ASCE)0733-9437(1997)123:3(175)

10.1061/(ASCE)0733-9429(1999)125:7(771)

10.1002/esp.467

10.1061/(ASCE)IR.1943-4774.0001208

10.1061/(ASCE)0733-9429(1994)120:1(60)

10.1029/2000WR900164

Ferro V., 2017, Applying hypothesis of self‐similarity for flow resistance law in Calabrian gravel bed rivers (Fiumare), Journal of Hydraulic Engineering, ASCE

10.13031/2013.32873

10.1016/j.catena.2014.12.016

Gilley J. E., 1990, Hydraulics characteristics of rills, Transactions of ASAE, 27, 797

10.1029/2000WR900252

10.1016/j.catena.2014.04.004

10.1002/esp.3290170510

10.1016/j.earscirev.2007.06.001

10.1016/S0341-8162(03)00058-4

10.1029/2011JF002289

10.1016/j.geomorph.2014.01.006

10.1029/96WR02937

Line D. E., 1988, Flow velocities of concentrated runoff along cropland furrows, Transactions of ASAE, 31, 1435, 10.13031/2013.30881

Luk S. H., 1992, Use of the salt tracing technique to determine the velocity of overland flow, Soil Technology, 5, 289

10.1029/97WR00013

10.1002/(SICI)1096-9837(199908)24:8<677::AID-ESP981>3.0.CO;2-1

10.1016/j.iswcr.2016.05.003

10.1002/hyp.10461

10.1016/j.earscirev.2014.06.001

10.1061/(ASCE)0733-9429(2008)134:9(1302)

Seiz S. M. Curless B. Diebel J. Scharstein D. &Szeliski R. (2006).A comparison an evaluation of multi‐view stereo reconstruction algorithms.IEEE Conference on Computer Vision ad Pattern recognition. IEEE Computer Society New York.

10.1061/(ASCE)0733-9429(1998)124:2(165)

Takken I., 1998, Modeling soil erosion, sediment transport and closely related hydrological processes, 63

10.1016/j.catena.2011.10.004

10.1016/j.geomorph.2012.08.021

Xinlan L., 2015, The effect of different soil erosion stages on surface roughness under simulated rainfall, Nature, Environment and Pollution Technology, 14, 9