Testing estimation of water surface in Italian rice district from MODIS satellite data

Luigi Ranghetti1, Lorenzo Busetto1, Alberto Crema1, Mauro Fasola2, Elisa Cardarelli2, Mirco Boschetti1
1Institute for Electromagnetic Sensing of Environment, Consiglio Nazionale delle Ricerche, Via Corti 12, 20133 Milano, Italy
2Department of Earth and Environmental Sciences, Università di Pavia, Via Ferrata 9, 27100 Pavia, Italy

Tài liệu tham khảo

Balsari, 1989, First test results of rice sowing on dry soil by pneumatic fertilizer spreader, 1673 Barsi, 2014, The spectral response of the landsat-8 operational land imager, Remote Sens., 6, 10232, 10.3390/rs61010232 Bechini, 2009, On-farm monitoring of economic and environmental performances of cropping systems: results of a 2-year study at the field scale in northern Italy, Ecol. Indic., 9, 1096, 10.1016/j.ecolind.2008.12.008 Bivand, 2014, rgdal: bindings for the geospatial data abstraction library, 8 Bogliani, 2008 Boschetti, 2004, Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: the pareto boundary, Remote Sens. Environ., 91, 280, 10.1016/j.rse.2004.02.015 Boschetti, 2014, Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems, PLoS ONE, 9, e88741, 10.1371/journal.pone.0088741 Boschetti, 2009, Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, Int. J. Remote Sens., 30, 4643, 10.1080/01431160802632249 Chang, 1991, Overview and prospects of rice production, 1 Donald, 2001, Agricultural intensification and the collapse of Europe's farmland bird populations, 268, 25 Du, 2012, Estimating surface water area changes using time-series Landsat data in the Qingjiang river basin, China, J. Appl. Remote Sens., 6, 10.1117/1.JRS.6.063609 Duveiller, 2015, Exploiting the multi-angularity of the {MODIS} temporal signal to identify spatially homogeneous vegetation cover: a demonstration for agricultural monitoring applications, Remote Sens. Environ., 166, 61, 10.1016/j.rse.2015.06.001 Elphick, 2010, The future for research on waterbirds in rice fields, Waterbirds, 33, 231, 10.1675/063.033.s117 Ente Nazionale Risi, 2015 European Commission, 2005 FAOSTAT, 2013 Fasola, 1994, Opportunistic use of foraging resources by heron communities in southern Europe, Ecography, 17, 113, 10.1111/j.1600-0587.1994.tb00083.x Fasola, 2014, The recent decline of heron populations in Italy and the changes in rice cultivation practice Fasola, 2010, Long-term trends of heron and egret populations in Italy, and the effects of climate, human-induced mortality, and habitat on population dynamics, Popul. Ecol., 52, 59, 10.1007/s10144-009-0165-1 Fasola, 1996, The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region, Waterbirds, 19, 122, 10.2307/1521955 Feyisa, 2014, Automated water extraction index: a new technique for surface water mapping using landsat imagery, Remote Sens. Environ., 140, 23, 10.1016/j.rse.2013.08.029 Finlayson, 1992 Flynn, 2009, Loss of functional diversity under land use intensification across multiple taxa, Ecol. Lett., 12, 22, 10.1111/j.1461-0248.2008.01255.x Frazier, 2000, Water body detection and delineation with Landsat TM data, Photogramm. Eng. Remote Sens., 66, 1461 Gao, 1996, Ndwi – a normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257, 10.1016/S0034-4257(96)00067-3 Greppi, 2008 Hassani, 2015, Index of extraction of water surfaces from Landsat 7 ETM+ images, Arab. J. Geosci., 8, 3381, 10.1007/s12517-014-1475-y Hastie, 2009 Henningsen, 2013 Hill, 1991, 91 Islam, 2008, Semi-automated methods for mapping wetlands using Landsat ETM+ and SRTM data, Int. J. Remote Sens., 29, 7077, 10.1080/01431160802235878 King, 2010, Effects of landscape features on waterbird use of rice fields, Waterbirds, 33, 151, 10.1675/063.033.s111 Kulawardhana, 2007, Evaluation of the wetland mapping methods using Landsat ETM+ and SRTM data, J. Spatial Hydrol., 7, 62 Lacaux, 2007, Classification of ponds from high-spatial resolution remote sensing: application to rift valley fever epidemics in Senegal, Remote Sens. Environ., 106, 66, 10.1016/j.rse.2006.07.012 Legendre, 2014, 2 Legendre, 1998, Numerical ecology Lunetta, 1999, Application of multi-temporal Landsat 5 TM imagery for wetland identification, Photogramm. Eng. Remote Sens., 65, 1303 Maclean, 2002 Moré, 2011, Multitemporal flooding dynamics of rice fields by means of discriminant analysis of radiometrically corrected remote sensing imagery, Int. J. Remote Sens., 32, 1983, 10.1080/01431161003645816 Motohka, 2009, Evaluation of optical satellite remote sensing for rice paddy phenology in monsoon Asia using a continuous in situ dataset, Int. J. Remote Sens., 30, 4343, 10.1080/01431160802549369 NASA LP DAAC, 2014 Nash, 1970, River flow forecasting through conceptual models part i – a discussion of principles, J. Hydrol., 10, 282, 10.1016/0022-1694(70)90255-6 Ouma, 2006, A water index for rapid mapping of shoreline changes of five east African rift valley lakes: an empirical analysis using Landsat TM and ETM+ data, Int. J. Remote Sens., 27, 3153, 10.1080/01431160500309934 Ozesmi, 2002, Satellite remote sensing of wetlands, Wetl. Ecol. Manage., 10, 381, 10.1023/A:1020908432489 Pebesma, 2005, Classes and methods for spatial data in R, R News, 5, 9 Peng, 2011, Detection and estimation of mixed paddy rice cropping patterns with MODIS data, Int. J. Appl. Earth Observ. Geoinform., 13, 13, 10.1016/j.jag.2010.06.001 Pernollet, 2015, A comparison of wintering duck numbers among European rice production areas with contrasting flooding regimes, Biol. Conserv., 186, 214, 10.1016/j.biocon.2015.03.019 QGIS Development Team, 2014 R Core Team, 2014 Regione Lombardia, 2014 Regione Lombardia, 2014 Regione Piemonte, 2000 Regione Piemonte, 2008 Richter, 2014 Romani, 2008 Roy, 2009, Southern Africa validation of the MODIS, l3JRC, and globcarbon burned-area products, IEEE Trans. Geosci. Remote Sens., 47, 1032, 10.1109/TGRS.2008.2009000 Sakamoto, 2009, Agro-ecological interpretation of rice cropping systems in flood-prone areas using modis imagery, Photogramm. Eng. Remote Sens., 75, 413, 10.14358/PERS.75.4.413 Sakamoto, 2005, A crop phenology detection method using time-series MODIS data, Remote Sens. Environ., 96, 366, 10.1016/j.rse.2005.03.008 Sánchez-Guzmán, 2007, Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: the importance of the rice fields in Extremadura, Spain, Biodivers. Conserv., 16, 3333, 10.1007/s10531-006-9018-9 Stoate, 2001, Ecological impacts of arable intensification in Europe, J. Environ. Manage., 63, 337, 10.1006/jema.2001.0473 Strahler, 2006 Sundar, 2010, Bird use of rice fields in the Indian subcontinent, Waterbirds, 33, 44, 10.1675/063.033.s104 Therneau, 2014, 1 Toral, 2011, Using Landsat images to map habitat availability for waterbirds in rice fields, Ibis, 153, 684, 10.1111/j.1474-919X.2011.01147.x Torbick, 2011, Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 4, 451, 10.1109/JSTARS.2010.2091493 Tornos, 2015, Assessment of MODIS spectral indices for determining rice paddy agricultural practices and hydroperiod, ISPRS J. Photogramm. Remote Sens., 101, 110, 10.1016/j.isprsjprs.2014.12.006 Tourenq, 2001, Are ricefields a good alternative to natural marshes for waterbird communities in the Camargue, Southern France?, Biol. Conserv., 100, 335, 10.1016/S0006-3207(01)00037-4 Tucker, 1979, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127, 10.1016/0034-4257(79)90013-0 Tulbure, 2013, Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011, ISPRS J. Photogramm. Remote Sens., 79, 44, 10.1016/j.isprsjprs.2013.01.010 US Geological Survey, 2014 Vermote, 1999 Warmerdam, 2008, 87