Testing estimation of water surface in Italian rice district from MODIS satellite data
International Journal of Applied Earth Observation and Geoinformation - Tập 52 - Trang 284-295 - 2016
Tài liệu tham khảo
Balsari, 1989, First test results of rice sowing on dry soil by pneumatic fertilizer spreader, 1673
Barsi, 2014, The spectral response of the landsat-8 operational land imager, Remote Sens., 6, 10232, 10.3390/rs61010232
Bechini, 2009, On-farm monitoring of economic and environmental performances of cropping systems: results of a 2-year study at the field scale in northern Italy, Ecol. Indic., 9, 1096, 10.1016/j.ecolind.2008.12.008
Bivand, 2014, rgdal: bindings for the geospatial data abstraction library, 8
Bogliani, 2008
Boschetti, 2004, Analysis of the conflict between omission and commission in low spatial resolution dichotomic thematic products: the pareto boundary, Remote Sens. Environ., 91, 280, 10.1016/j.rse.2004.02.015
Boschetti, 2014, Comparative analysis of normalised difference spectral indices derived from MODIS for detecting surface water in flooded rice cropping systems, PLoS ONE, 9, e88741, 10.1371/journal.pone.0088741
Boschetti, 2009, Multi-year monitoring of rice crop phenology through time series analysis of MODIS images, Int. J. Remote Sens., 30, 4643, 10.1080/01431160802632249
Chang, 1991, Overview and prospects of rice production, 1
Donald, 2001, Agricultural intensification and the collapse of Europe's farmland bird populations, 268, 25
Du, 2012, Estimating surface water area changes using time-series Landsat data in the Qingjiang river basin, China, J. Appl. Remote Sens., 6, 10.1117/1.JRS.6.063609
Duveiller, 2015, Exploiting the multi-angularity of the {MODIS} temporal signal to identify spatially homogeneous vegetation cover: a demonstration for agricultural monitoring applications, Remote Sens. Environ., 166, 61, 10.1016/j.rse.2015.06.001
Elphick, 2010, The future for research on waterbirds in rice fields, Waterbirds, 33, 231, 10.1675/063.033.s117
Ente Nazionale Risi, 2015
European Commission, 2005
FAOSTAT, 2013
Fasola, 1994, Opportunistic use of foraging resources by heron communities in southern Europe, Ecography, 17, 113, 10.1111/j.1600-0587.1994.tb00083.x
Fasola, 2014, The recent decline of heron populations in Italy and the changes in rice cultivation practice
Fasola, 2010, Long-term trends of heron and egret populations in Italy, and the effects of climate, human-induced mortality, and habitat on population dynamics, Popul. Ecol., 52, 59, 10.1007/s10144-009-0165-1
Fasola, 1996, The value of rice fields as substitutes for natural wetlands for waterbirds in the Mediterranean region, Waterbirds, 19, 122, 10.2307/1521955
Feyisa, 2014, Automated water extraction index: a new technique for surface water mapping using landsat imagery, Remote Sens. Environ., 140, 23, 10.1016/j.rse.2013.08.029
Finlayson, 1992
Flynn, 2009, Loss of functional diversity under land use intensification across multiple taxa, Ecol. Lett., 12, 22, 10.1111/j.1461-0248.2008.01255.x
Frazier, 2000, Water body detection and delineation with Landsat TM data, Photogramm. Eng. Remote Sens., 66, 1461
Gao, 1996, Ndwi – a normalized difference water index for remote sensing of vegetation liquid water from space, Remote Sens. Environ., 58, 257, 10.1016/S0034-4257(96)00067-3
Greppi, 2008
Hassani, 2015, Index of extraction of water surfaces from Landsat 7 ETM+ images, Arab. J. Geosci., 8, 3381, 10.1007/s12517-014-1475-y
Hastie, 2009
Henningsen, 2013
Hill, 1991, 91
Islam, 2008, Semi-automated methods for mapping wetlands using Landsat ETM+ and SRTM data, Int. J. Remote Sens., 29, 7077, 10.1080/01431160802235878
King, 2010, Effects of landscape features on waterbird use of rice fields, Waterbirds, 33, 151, 10.1675/063.033.s111
Kulawardhana, 2007, Evaluation of the wetland mapping methods using Landsat ETM+ and SRTM data, J. Spatial Hydrol., 7, 62
Lacaux, 2007, Classification of ponds from high-spatial resolution remote sensing: application to rift valley fever epidemics in Senegal, Remote Sens. Environ., 106, 66, 10.1016/j.rse.2006.07.012
Legendre, 2014, 2
Legendre, 1998, Numerical ecology
Lunetta, 1999, Application of multi-temporal Landsat 5 TM imagery for wetland identification, Photogramm. Eng. Remote Sens., 65, 1303
Maclean, 2002
Moré, 2011, Multitemporal flooding dynamics of rice fields by means of discriminant analysis of radiometrically corrected remote sensing imagery, Int. J. Remote Sens., 32, 1983, 10.1080/01431161003645816
Motohka, 2009, Evaluation of optical satellite remote sensing for rice paddy phenology in monsoon Asia using a continuous in situ dataset, Int. J. Remote Sens., 30, 4343, 10.1080/01431160802549369
NASA LP DAAC, 2014
Nash, 1970, River flow forecasting through conceptual models part i – a discussion of principles, J. Hydrol., 10, 282, 10.1016/0022-1694(70)90255-6
Ouma, 2006, A water index for rapid mapping of shoreline changes of five east African rift valley lakes: an empirical analysis using Landsat TM and ETM+ data, Int. J. Remote Sens., 27, 3153, 10.1080/01431160500309934
Ozesmi, 2002, Satellite remote sensing of wetlands, Wetl. Ecol. Manage., 10, 381, 10.1023/A:1020908432489
Pebesma, 2005, Classes and methods for spatial data in R, R News, 5, 9
Peng, 2011, Detection and estimation of mixed paddy rice cropping patterns with MODIS data, Int. J. Appl. Earth Observ. Geoinform., 13, 13, 10.1016/j.jag.2010.06.001
Pernollet, 2015, A comparison of wintering duck numbers among European rice production areas with contrasting flooding regimes, Biol. Conserv., 186, 214, 10.1016/j.biocon.2015.03.019
QGIS Development Team, 2014
R Core Team, 2014
Regione Lombardia, 2014
Regione Lombardia, 2014
Regione Piemonte, 2000
Regione Piemonte, 2008
Richter, 2014
Romani, 2008
Roy, 2009, Southern Africa validation of the MODIS, l3JRC, and globcarbon burned-area products, IEEE Trans. Geosci. Remote Sens., 47, 1032, 10.1109/TGRS.2008.2009000
Sakamoto, 2009, Agro-ecological interpretation of rice cropping systems in flood-prone areas using modis imagery, Photogramm. Eng. Remote Sens., 75, 413, 10.14358/PERS.75.4.413
Sakamoto, 2005, A crop phenology detection method using time-series MODIS data, Remote Sens. Environ., 96, 366, 10.1016/j.rse.2005.03.008
Sánchez-Guzmán, 2007, Identifying new buffer areas for conserving waterbirds in the Mediterranean basin: the importance of the rice fields in Extremadura, Spain, Biodivers. Conserv., 16, 3333, 10.1007/s10531-006-9018-9
Stoate, 2001, Ecological impacts of arable intensification in Europe, J. Environ. Manage., 63, 337, 10.1006/jema.2001.0473
Strahler, 2006
Sundar, 2010, Bird use of rice fields in the Indian subcontinent, Waterbirds, 33, 44, 10.1675/063.033.s104
Therneau, 2014, 1
Toral, 2011, Using Landsat images to map habitat availability for waterbirds in rice fields, Ibis, 153, 684, 10.1111/j.1474-919X.2011.01147.x
Torbick, 2011, Monitoring rice agriculture in the Sacramento Valley, USA with multitemporal PALSAR and MODIS imagery, IEEE J. Select. Top. Appl. Earth Observ. Remote Sens., 4, 451, 10.1109/JSTARS.2010.2091493
Tornos, 2015, Assessment of MODIS spectral indices for determining rice paddy agricultural practices and hydroperiod, ISPRS J. Photogramm. Remote Sens., 101, 110, 10.1016/j.isprsjprs.2014.12.006
Tourenq, 2001, Are ricefields a good alternative to natural marshes for waterbird communities in the Camargue, Southern France?, Biol. Conserv., 100, 335, 10.1016/S0006-3207(01)00037-4
Tucker, 1979, Red and photographic infrared linear combinations for monitoring vegetation, Remote Sens. Environ., 8, 127, 10.1016/0034-4257(79)90013-0
Tulbure, 2013, Spatiotemporal dynamic of surface water bodies using Landsat time-series data from 1999 to 2011, ISPRS J. Photogramm. Remote Sens., 79, 44, 10.1016/j.isprsjprs.2013.01.010
US Geological Survey, 2014
Vermote, 1999
Warmerdam, 2008, 87