Testing emissions equivalency metrics against climate policy goals

Environmental Science and Policy - Tập 66 - Trang 191-198 - 2016
Morgan R. Edwards1, James McNerney1, Jessika E. Trancik1,2
1Institute for Data, Systems, and Society, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
2Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM 87501, USA

Tài liệu tham khảo

Allen, 2009, Warming caused by cumulative carbon emissions towards the trillionth tonne, Nature, 458, 1163, 10.1038/nature08019 Allen, 2016, New use of global warming potentials to compare cumulative and short-lived climate pollutants, Nat. Clim. Change, 6, 773, 10.1038/nclimate2998 Alvarez, 2012, Greater focus needed on methane leakage from natural gas infrastructure, Proc. Natl. Acad. Sci. U. S. A., 109, 6435, 10.1073/pnas.1202407109 Azar, 2011, Valuing the non-CO2 climate impacts of aviation, Clim. Change, 111, 559, 10.1007/s10584-011-0168-8 Boucher, 2012, Comparison of physically- and economically-based CO2-equivalencies for methane, Earth Syst. Dyn., 3, 49, 10.5194/esd-3-49-2012 Brandt, 2014, Methane leaks from North American natural gas systems, Science, 343, 733, 10.1126/science.1247045 Brennan, 2013, On the potential for alternative greenhouse gas equivalence metrics to influence sectoral mitigation patterns, Environ. Res. Lett., 8, 014033, 10.1088/1748-9326/8/1/014033 Camuzeaux, 2015, Influence of methane emissions and vehicle efficiency on the climate implications of heavy-duty natural gas trucks, Environ. Sci. Technol., 49, 6402, 10.1021/acs.est.5b00412 Cherubini, 2011, Life cycle assessment of bioenergy systems: state of the art and future challenges, Bioresource Technol., 102, 437, 10.1016/j.biortech.2010.08.010 Daniel, 2011, Limitations of single-basket trading: lessons from the Montreal Protocol for climate policy, Clim. Change, 111, 241, 10.1007/s10584-011-0136-3 Deuber, 2013, Physico-economic evaluation of climate metrics: a conceptual framework, Environ. Sci. Policy, 9, 37, 10.1016/j.envsci.2013.01.018 2014 Edwards, 2014, Climate impacts of energy technologies depend on emissions timing, Nat. Clim. Change, 4, 347, 10.1038/nclimate2204 Ekholm, 2013, Robustness of climate metrics under climate policy ambiguity, Environ. Sci. Policy, 31, 44, 10.1016/j.envsci.2013.03.006 Frank, 2012, Methane and nitrous oxide emissions affect the life-cycle analysis of algal biofuels, Environ. Res. Lett., 7, 014030, 10.1088/1748-9326/7/1/014030 Fuglestvedt, 2003, Metrics of climate change: assessing radiative forcing and emission indices, Clim. Change, 58, 267, 10.1023/A:1023905326842 Fuglestvedt, 2008, Climate forcing from the transport sectors, Proc. Natl. Acad. Sci. U. S. A., 105, 454, 10.1073/pnas.0702958104 Fuglestvedt, 2010, Transport impacts on atmosphere and climate: metrics, Atmos. Environ., 44, 4648, 10.1016/j.atmosenv.2009.04.044 Heath, 2014, Harmonization of initial estimates of shale gas life cycle greenhouse gas emissions for electric power generation, Proc. Natl. Acad. Sci. U. S. A., 111, E3167, 10.1073/pnas.1309334111 Hong, 2016, Greenhouse gas emissions from domestic hot water: heat pumps compared to most commonly used systems, Energy Sci. Eng., 4, 123, 10.1002/ese3.112 1990 Huntingford, 2015, The implications of carbon dioxide and methane exchange for the heavy mitigation RCP2.6 scenario under two metrics, Environ. Sci. Policy, 51, 77, 10.1016/j.envsci.2015.03.013 Johansson, 2006, The cost of using global warming potentials: analysing the trade off between CO2, CH4 and N2O, Clim. Change, 77, 291, 10.1007/s10584-006-9054-1 Johansson, 2012, Economics- and physical-based metrics for comparing greenhouse gases, Clim. Change, 110, 123, 10.1007/s10584-011-0072-2 Kandlikar, 1996, Indices for comparing greenhouse gas emissions: integrating science and economics, Energy Econ., 18, 265, 10.1016/S0140-9883(96)00021-7 Manne, 2001, An alternative approach to establishing trade-offs among greenhouse gases, Nature, 410, 675, 10.1038/35070541 Marten, 2012, Estimating the social cost of non-CO2 GHG emissions: methane and nitrous oxide, Energy Policy, 51, 957, 10.1016/j.enpol.2012.09.073 O’Neill, 2000, The jury is still out on global warming potentials, Clim. Change, 44, 427, 10.1023/A:1005582929198 O’Neill, 2003, Economics, natural science, and the costs of global warming potentials, Clim. Change, 58, 251, 10.1023/A:1023968127813 Peters, 2011, The integrated global temperature change potential (iGTP) and relationships between emission metrics, Environ. Res. Lett., 6, 044021, 10.1088/1748-9326/6/4/044021 Reilly, 1993, Climate change damage and the trace gas index issue, Environ. Resour. Econ., 3, 41, 10.1007/BF00338319 Reisinger, 2013, Implications of alternative metrics for global mitigation costs and greenhouse gas emissions from agriculture, Clim. Change, 117, 677, 10.1007/s10584-012-0593-3 Roe, 2007, Why is climate sensitivity so unpredictable?, Science, 318, 629, 10.1126/science.1144735 Roy, 2015, Methane mitigation timelines to inform energy technology evaluation, Environ. Res. Lett., 10, 114024, 10.1088/1748-9326/10/11/114024 Shine, 2005, Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases, Clim. Change, 68, 281, 10.1007/s10584-005-1146-9 Shine, 2007, Comparing the climate effect of emissions of short- and long-lived climate agents, Philos. Trans. R. Soc. A, 365, 1903, 10.1098/rsta.2007.2050 Shine, 2009, The global warming potential – the need for an interdisciplinary retrial, Clim. Change, 96, 467, 10.1007/s10584-009-9647-6 Smith, 2012, Equivalence of greenhouse-gas emissions for peak temperature limits, Nat. Clim. Change, 2, 8 2013 Tanaka, 2009, Evaluating global warming potentials with historical temperature, Clim. Change, 96, 443, 10.1007/s10584-009-9566-6 Tanaka, 2013, Emissions metrics under a 2°C stabilization target, Clim. Change, 117, 933, 10.1007/s10584-013-0693-8 Tol, 2012, A unifying framework for metrics for aggregating the climate effect of different emissions, Environ. Res. Lett., 7, 044006, 10.1088/1748-9326/7/4/044006 U.S. Environmental Protection Agency, 2015, Standards of performance for greenhouse gas emissions from new, modified, and reconstructed stationary sources: electric utility generating units, Fed. Regist., 80, 64510 U.S. Environmental Protection Agency, 2015, Carbon pollution emission guidelines for existing stationary sources: electric utility generation units, Fed. Regist., 80, 64661 U.S. Environmental Protection Agency, 2016, Oil and natural gas sector: emissions standards for new, reconstructed, and modified sources, Final Rule United Nations, 1998 United Nations, 2015 van den Berg, 2015, Impact of the choice of emission metric on greenhouse gas abatement and costs, Environ. Res. Lett., 10, 24001, 10.1088/1748-9326/10/2/024001 van Vuuren, 2006, Long-term multi-gas scenarios to stabilise radiative forcing—exploring costs and benefits within an integrated assessment framework, Energy J., 27, 201 van Vuuren, 2006, Multi-gas scenarios to stabilize radiative forcing, Energy Econ., 28, 102, 10.1016/j.eneco.2005.10.003 van Vuuren, 2011, The representative concentration pathways: an overview, Clim. Change, 109, 5, 10.1007/s10584-011-0148-z Weisser, 2007, A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies, Energy, 32, 1543, 10.1016/j.energy.2007.01.008