Testing and Diagnosis of Realistic Defects in Digital Microfluidic Biochips
Tóm tắt
Từ khóa
Tài liệu tham khảo
T.H. Cormen, S. Clifford, C.E. Leiserson, and R.L. Rivest, Introduction to Algorithm, MIT, 2001.
N. Deb and R.D. Blanton, “Analysis of Failure Sources in Surface-micromachined MEMS,” Proc. IEEE Int. Test Conf., pp. 739–749, 2000.
N. Deb and R.D. Blanton, “Multi-modal Built-in Self-test for Symmetric Microsystems,” Proc. IEEE VLSI Test Symp., pp. 139–147, 2004.
A. Dhayni, S. Mir, and L. Rufer, “MEMS Built-in-self-test using MLS,” Proc. IEEE Eur. Test Symp., pp. 66–71, 2004.
International Technology Roadmap for Semiconductor (ITRS), http://public.itrs.net/Files/2003ITRS/Home2003.htm .
H.G. Kerkhoff, “Testing Philosophy Behind the Micro Analysis System,” Proc. SPIE: Design, Test and Microfabrication of MEMS and MOEMS, vol. 3680, pp. 78–83, 1999.
H.G. Kerkhoff and H.P.A. Hendriks, “Fault Modeling and Fault Simulation in Mixed Micro-fluidic Microelectronic Systems,” JETTA, vol. 17, pp. 427–437, 2001.
H.G. Kerkhoff and M. Acar, “Testable Design and Testing of Micro-electro-fluidic Arrays,” Proc. IEEE VLSI Test Symp., pp. 403–409, 2003.
A. Kolpekwar and R.D. Blanton, “Development of a MEMS Testing Methodology,” Proc. IEEE Int. Test Conf., pp. 923–93, 1997.
S. Mir, B. Charlot, and B. Courtois, “Extending Fault-based Testing to Microelectromechanical Systems,” JETTA, vol. 16, pp. 279–288, 2000.
M.G. Pollack, “Electrowetting-Based Microactuation of Droplets for Digital Microfluidics,” Ph.D. thesis, Duke University. 2001.
M. Pollack, A.D. Shenderov, and R.B. Fair, “Electrowetting-based Actuation of Droplets for Integrated Microfluidics,” Lab Chip, vol. 2, pp. 96–101, 2002.
V. Srinivasan, V.K. Pamula, M.G. Pollack, and R.B. Fair, “A Digital Microfluidic Biosensor for Multianalyte Detection,” Proc. IEEE MEMS Conference, pp. 327–330, 2003.
V. Srinivasan, V.K. Pamula, M.G. Pollack, and R.B. Fair, “Clinical Diagnostics on Human Whole Blood, Plasma, Serum, Urine, Saliva, Sweat, and Tears on a Digital Microfluidic Platform,” Proc. Micro Total Analysis Systems, pp. 1287–1290, 2003.
V. Srinivasan et al., “An Integrated Digital Microfluidic Lab-on-a-chip for Clinical Diagnostics on Human Physiological Fluids,” Lab Chip, pp. 310–315, 2004.
F. Su and K. Chakrabarty, “Architectural-level Synthesis of Digital Microfluidics-based Biochips,” Proc. IEEE Int. Conf. on CAD, pp. 223–228, 2004.
F. Su and K. Chakrabarty, “Defect tolerance for Gracefully-degradable Microfluidics-based Biochips,” accepted for publication in Proc. IEEE VLSI Test Symp., pp. 321–326, 2005.
F. Su, S. Ozev, and K. Chakrabarty, “Testing of Droplet-based Microelectrofluidic Systems,” Proc. IEEE Int. Test Conf., pp. 1192–1200, 2003.
F. Su, S. Ozev, and K. Chakrabarty, “Test Planning and Test Resource Optimization for Droplet-based Microfluidic Systems,” Proc. IEEE Eur. Test Sym., pp. 72–77, 2004.
F. Su, S. Ozev, and K. Chakrabarty, “Concurrent Testing of Droplet-based Microfluidic Systems for Multiplexed Biomedical Assays,” Proc. IEEE Int. Test Conf., pp. 883–892, 2004.
F. Su, K. Chakrabarty, and V.K. Pamula, “Yield Enhancement of Digital Microfluidics-based Biochips Using Space Redundancy and Local Reconfiguration,” accepted for publication in Proc. DATE Conference, pp. 1196–1201, 2005.
S.K. Tewksbury, “Challenges Facing Practical DFT for MEMS,” Proc. Defect and Tolerance in VLSI Systems, pp. 11–17, 2001.
D.B. West, Introduction to Graph Theory, Prentice-Hall, New Jersey, 1996.