Testing Measurement Invariance with Ordinal Missing Data: A Comparison of Estimators and Missing Data Techniques
Tóm tắt
Từ khóa
Tài liệu tham khảo
Arbuckle J. L, 1996, Advanced Structural Equation Modeling: Issues and Techniques, 243, 277
Enders C. K, 2010, Applied missing data analysis
Jia, F. (2016). Methods for handling missing non-normal data in structural equation modeling (Unpublished doctoral dissertation). University of Kansas, Lawrence, KS.
Kaplan, D. (2014). Bayesian statistics for the social sciences New York, NY: Guilford.
Kline R. B, 2015, Principles and practice of structural equation modeling
Li, C.H. (2014). The performance of MLR, USLMV, and WLSMV estimation in structural regression models with ordinal variables (Unpublished doctoral dissertation). Michigan State University, East Lansing, MI.
Millsap R. E, 2011, Statistical approaches to measurement invariance
Muthén L. K., 1998, Mplus user’s guide, 8
Samejima F, 1969, Psychometrika Monograph Supplement
Teman, E. D. (2012). The performance of multiple imputation and full information maximum likelihood for missing ordinal data in structural equation models Ann Arbor, MI: ProQuest.