Testing Measurement Invariance with Ordinal Missing Data: A Comparison of Estimators and Missing Data Techniques

Multivariate Behavioral Research - Tập 55 Số 1 - Trang 87-101 - 2020
Po‐Yi Chen1, Wei Wu2, Mauricio Garnier‐Villarreal3, Benjamin A. Kite1, Fan Jia4
1Department of Psychology , University of Kansas
2Department of Psychology, Indiana University-Purdue University Indianapolis
3Marquette University
4University of Kansas

Tóm tắt

Từ khóa


Tài liệu tham khảo

Arbuckle J. L, 1996, Advanced Structural Equation Modeling: Issues and Techniques, 243, 277

10.1002/9781118619179

10.1080/00036810600603377

10.1080/10705510701301834

10.1007/s11136-014-0816-3

10.1207/S15328007SEM0902_5

10.1080/10705511.2014.915373

Enders C. K, 2010, Applied missing data analysis

10.1037/1082-989X.9.4.466

10.1037/a0031669

10.1207/S15328007SEM1001_4

Jia, F. (2016). Methods for handling missing non-normal data in structural equation modeling (Unpublished doctoral dissertation). University of Kansas, Lawrence, KS.

10.1037/met0000152

Kaplan, D. (2014). Bayesian statistics for the social sciences New York, NY: Guilford.

Kline R. B, 2015, Principles and practice of structural equation modeling

Li, C.H. (2014). The performance of MLR, USLMV, and WLSMV estimation in structural regression models with ordinal variables (Unpublished doctoral dissertation). Michigan State University, East Lansing, MI.

10.1037/met0000093

10.1037/met0000075

10.1080/10705519809540087

10.1177/1094428104268027

10.1007/BF02294825

Millsap R. E, 2011, Statistical approaches to measurement invariance

10.1007/BF02294210

10.1007/BF02294325

Muthén L. K., 1998, Mplus user’s guide, 8

10.1007/BF02296207

10.1037/a0029315

Samejima F, 1969, Psychometrika Monograph Supplement

10.1080/10705511.2014.882658

10.1007/BF02296192

10.1080/10705511.2013.824793

10.1207/s15328007sem1202_1

10.1080/10705511.2014.882692

10.1080/10705511.2014.937669

10.1007/BF02294363

Teman, E. D. (2012). The performance of multiple imputation and full information maximum likelihood for missing ordinal data in structural equation models Ann Arbor, MI: ProQuest.

10.1080/10705511.2013.797819

10.1037/1082-989X.12.1.58

10.1080/00273171.2015.1022644

10.1111/0081-1750.00078