Test–Retest Reproducibility Analysis of Lung CT Image Features
Tóm tắt
Từ khóa
Tài liệu tham khảo
Nguyen T, Rangayyan R: Shape analysis of breast masses in mammograms via the fractal dimension. Conf Proc IEEE Eng Med Biol Soc 3:3210–3213, 2005
Schuster DP: The opportunities and challenges of developing imaging biomarkers to study lung function and disease. Am J Respir Crit Care Med 176(3):224–230, 2007
Suzuki C, Jacobsson H, Hatschek T, et al: Radiologic measurements of tumor response to treatment: practical approaches and limitations. Radiographics 28(2):329–344, 2008
Tuma RS: Sometimes size doesn't matter: reevaluating RECIST and tumor response rate endpoints. J Natl Cancer Inst 98(18):1272–1274, 2006
Ganeshan B, Abaleke S, Young RC, et al: Texture analysis of non-small cell lung cancer on unenhanced computed tomography: initial evidence for a relationship with tumour glucose metabolism and stage. Cancer Imaging 10:137–143, 2010
Way TW, Sahiner B, Chan HP, et al: Computer-aided diagnosis of pulmonary nodules on CT scans: improvement of classification performance with nodule surface features. Med Phys 36(7):3086–3098, 2009
Samala R, Moreno W, You Y, et al: A novel approach to nodule feature optimization on thin section thoracic CT. Acad Radiol 16(4):418–427, 2009
Lee MC, Boroczky L, Sungur-Stasik K, et al: Computer-aided diagnosis of pulmonary nodules using a two-step approach for feature selection and classifier ensemble construction. Artif Intell Med 50(1):43–53, 2010
Zhu Y, Tan Y, Hua Y, et al: Feature selection and performance evaluation of support vector machine (SVM)-based classifier for differentiating benign and malignant pulmonary nodules by computed tomography. J Digit Imaging 23(1):51–65, 2010
Al-Kadi O, Watson D: Texture analysis of aggressive and nonaggressive lung tumor CE CT images. IEEE Trans Biomed Eng 55(7):1822–1830, 2008
Kido S, Kuriyama K, Higashiyama M, et al: Fractal analysis of internal and peripheral textures of small peripheral bronchogenic carcinomas in thin-section computed tomography: comparison of bronchioloalveolar cell carcinomas with nonbronchioloalveolar cell carcinomas. J Comput Assist Tomogr 27(1):56–61, 2003
Segal E, Sirlin CB, Ooi C, et al: Decoding global gene expression programs in liver cancer by noninvasive imaging. Nat Biotechnol 25(6):675–680, 2007
Buckler AJ, Mozley PD, Schwartz L, et al: Volumetric CT in lung cancer: an example for the qualification of imaging as a biomarker. Acad Radiol 17(1):107–115, 2010
America RSoN: Quantitative imaging biomarker alliance for volumetric CT image analysis: roadmap for a staged validation plan, 2010
Zhao B, James LP, Moskowitz CS, et al: Evaluating variability in tumor measurements from same-day repeat CT scans of patients with non-small cell lung cancer. Radiology 252(1):263–272, 2009
RIDER. The Reference Image Database to Evaluate Therapy Response. Available at: https://wiki.cancerimagingarchive.net/display/Public/RIDER+Collections;jsessionid=C78203F71E49C7EA3A43E0D213CE5555 . Accessed 24 Jun 2014
Gu Y, Kumar V, Hall LO, et al: Automated delineation of lung tumors from CT images using a single click ensemble segmentation approach. Pattern Recogn 46(3):692–702, 2013
NBIA. National Biomedical Imaging Archive. Available at: https://imaging.nci.nih.gov/ncia . Accessed 30 June 2014
Definiens. Definiens AG, Munchen, Germany. Available at: http://www.definiens.com/product-services/definiens-xd-product-suite.html . Accessed 30 June 2014
Athelogou M, Schmidt G, Schaepe A, et al: Cognition network technology—a novel multimodal image analysis technique for automatic identification and quantification of biological image contents. In: Shorte SL, Frischknecht F Eds. Book cognition network technology—a novel multimodal image analysis technique for automatic identification and quantification of biological image contents. Springer-Verlag, New York City, 2007, pp 407–422
Baatz M, Zimmermann J, Blackmore CG: Automated analysis and detailed quantification of biomedical images using Definiens Congnition Network Technology. Comb Chem High Throughput Screen 12(9):908–916, 2009
Bendtsen C, Kietzmann M, Korn R, Mozley P, Schmidt G, Binnig G: X-ray computed tomography: semiautomated volumetric analysis of late-stage lung tumors as a basis for response assessments. Int J Biomed Imaging, vol 2011, 2011
Basu S, Hall LO, Goldgof DB, et al: Developing a classifier model for lung tumors in ct-scan images. IEEE Intl Conf on Systems, Man and Cybernetics, (SMC 2011), Anchorage, Alaska, 2011
RGD Steel JT: Principles and procedures of statistics. McGraw-Hill, New York, 1960
Colin C, Frank AW, Gramaji H, et al: An R-square measured of goodness of fit for some common nonlinear regression models. J Econ 77(2):1790–1792, 1997
Aoki T, Tomoda Y, Watanabe H, et al: Peripheral lung adenocarcinoma: correlation of thin-section CT findings with histologic prognostic factors and survival. Radiology 220(3):803–809, 2001
Takashima S MY, Hasegawa M, Saito A, Haniuda M, Kadoya M. High-resolution CT features: prognostic significance in peripheral lung adenocarcinoma with bronchioloalveolar carcinoma components. Respiration: Int Rev Thorac Dis 70(1), 2003
Subramanian J, Simon R: Gene exression-based signature in lung cancer: ready for clinical use? JNCI 102(7):464–474, 2010
Jain AK, Zongker D: Feature selection: evaluation, application, and small sample performance. IEEE Trans Pattern Anal 19(2):153–158, 1997
Pudil P, Novovičová J, Kittler J: Floating search methods in feature selection. Pattern Recogn Lett 15:1119–1125, 1994
Saeys Y, Inza I: A review of feature selection techniques in bioinformatics. Bioinformatics 23:2507–2517, 2007
Landis JR, Koch G: The measurement of observer agreement for categorical data. Biometrics 33:159–174, 1977
Ganeshan B, Panayiotou E, Burnand K, et al: Tumour heterogeneity in non-small cell lung carcinoma assessed by CT texture analysis: a potential marker of survival. Eur Radiol 22(4):796–802, 2012
Yanagawa M, Tanaka Y, Kusumoto M, et al: Automated assessment of malignant degree of small peripheral adenocarcinomas using volumetric CT data: correlation with pathologic prognostic factors. Lung Cancer 70(3):286–294, 2010
Benjamini Y, Hochberg Y: Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc 57(1):289–300, 1995