Terrestrial-like zircon in a clast from an Apollo 14 breccia
Tài liệu tham khảo
Amelin, 1999, Nature of the Earth's earliest crust from hafnium isotopes in single detrital zircons, Nature, 399, 252, 10.1038/20426
Armstrong, 2002, Rummaging through Earth's Attic for remains of ancient life, Icarus, 160, 183, 10.1006/icar.2002.6957
Ashley, 2015, Modeling prograde TiO2 activity and its significance for Ti-in-quartz thermobarometry of politic metamorphic rocks, Contrib. Mineral. Petrol., 169, 1, 10.1007/s00410-015-1118-7
Bell, 2013, Post-Hadean transitions in Jack Hills zircon provenance: a signal of the Late Heavy Bombardment?, Earth Planet. Sci. Lett., 364, 1, 10.1016/j.epsl.2013.01.001
Burgisser, 2007, Redox evolution of a degassing magma rising to the surface, Nature, 445, 194, 10.1038/nature05509
Burnham, 2012, An experimental study of trace element partitioning between zircon and melt as a function of oxygen fugacity, Geochim. Cosmochim. Acta, 95, 196, 10.1016/j.gca.2012.07.034
Burnham, 2014, The effect of oxygen fugacity, melt composition, temperature and pressure on the oxidation state of cerium in silicate melts, Chem. Geol., 366, 52, 10.1016/j.chemgeo.2013.12.015
Carley, 2014, Iceland is not a magmatic analog for the Hadean: evidence from the zircon record, Earth Planet. Sci. Lett., 405, 85, 10.1016/j.epsl.2014.08.015
Cherniak, 1997, Rare-earth diffusion in zircon, Chem. Geol., 134, 289, 10.1016/S0009-2541(96)00098-8
Cherniak, 2001, Pb diffusion in zircon, Chem. Geol., 172, 5, 10.1016/S0009-2541(00)00233-3
Cherniak, 2007, Ti diffusion in zircon, Chem. Geol., 242, 470, 10.1016/j.chemgeo.2007.05.005
Cherniak, 2007, Ti diffusion in quartz, Chem. Geol., 236, 65, 10.1016/j.chemgeo.2006.09.001
Compston, 1991, Initial Pb isotopic compositions of lunar granites as determined by ion microprobe, 473
Crawford, 2008, On the survivability and detectability of terrestrial meteorites on the Moon, Astrobiology, 8, 242, 10.1089/ast.2007.0215
Crow, 2017, Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons, Geochim. Cosmochim. Acta, 202, 264, 10.1016/j.gca.2016.12.019
Ferry, 2007, New thermodynamic models and revised calibrations for the Ti-in-zircon and Zr-in-rutile thermometers, Contrib. Mineral. Petrol., 154, 429, 10.1007/s00410-007-0201-0
Frost, 2008, The redox state of Earth's mantle, Annu. Rev. Earth Planet. Sci., 36, 389, 10.1146/annurev.earth.36.031207.124322
Fu, 2008, Ti-in-zircon thermometry: applications and limitations, Contrib. Mineral. Petrol., 156, 197, 10.1007/s00410-008-0281-5
Gaillard, 2015, The redox geodynamics linking basalts and their mantle sources through space and time, Chem. Geol., 418, 217, 10.1016/j.chemgeo.2015.07.030
Grange, 2013, Interpreting U–Pb data from primary and secondary features in lunar zircon, Geochim. Cosmochim. Acta, 101, 112, 10.1016/j.gca.2012.10.013
Hinton, 1991, Ion probe analysis of zircon and Yttrobetafite in a lunar granite, 575
Housen, 2011, Ejecta from impact craters, Icarus, 211, 856, 10.1016/j.icarus.2010.09.017
Johnson, 2016, Formation of the Orientale lunar multiring basin, Science, 354, 441, 10.1126/science.aag0518
Joy, 2015, Identification of magnetite in lunar regolith breccia 60016: evidence for oxidized conditions at the lunar surface, Meteorit. Planet. Sci., 50, 1157, 10.1111/maps.12462
Kenny, 2016, Differentiated impact melt sheets may be a potential source of Hadean detrital zircon, Geology, 44, 435, 10.1130/G37898.1
Maxwell, 1977, Simple Z model for cratering, ejection, and the overturned flap, 1003
Meyer, 1988, Tungsten-bearing yttrobetafite in lunar granophyre, Am. Mineral., 73, 1420
Meyer, 1996, Uranium-lead ages for lunar zircons: evidence for a prolonged period of granophyere formation from 4.32 to 3.88 Ga, Meteorit. Planet. Sci., 31, 370, 10.1111/j.1945-5100.1996.tb02075.x
McDonough, 1995, The composition of the Earth, Chem. Geol., 120, 223, 10.1016/0009-2541(94)00140-4
Miljković, 2013, Asymmetric distribution of lunar impact basins caused by variations in target properties, Science, 342, 724, 10.1126/science.1243224
Miljković, 2016, Subsurface morphology and scaling of lunar impact basins, J. Geophys. Res., Planets, 121, 1695, 10.1002/2016JE005038
Monecke, 2011, The lanthanide tetrad effect in lunar granites: evidence for the occurrence of water on the moon?
Murakami, 1991, Alpha-decay event damage in zircon, Am. Mineral., 76, 1510
Nemchin, 2010, Distribution of rare earth elements in lunar zircon, Am. Mineral., 95, 273, 10.2138/am.2010.3297
Nemchin, 2017, Pb–Pb ages of feldspathic clasts in two Apollo 14 breccia samples, Geochim. Cosmochim. Acta, 217, 441, 10.1016/j.gca.2017.08.024
Pearce, 1997, A compilation of new and published major and trace element data for NIST SRM 610 and NIST SRM 612 glass reference materials, Geostand. Newsl., 21, 115, 10.1111/j.1751-908X.1997.tb00538.x
Pierazzo, 1997, A re-evaluation of impact melt production, Icarus, 127, 408, 10.1006/icar.1997.5713
Potter, 2013, Quantifying the attenuation of structural uplift beneath large lunar craters, Geophys. Res. Lett., 40, 5615, 10.1002/2013GL057829
Potter, 2015, Scaling of basin-sized impacts and the influence of target temperature, Spec. Pap., Geol. Soc. Am., 518
Premo, 1999, Pb-isotopic systematics of lunar highland rocks (>3.9 Ga): constraints on early lunar evolution, Int. Geol. Rev., 41, 95, 10.1080/00206819909465134
Prowatke, 2006, Trace element partitioning between apatite and silicate melts, Geochim. Cosmochim. Acta, 70, 4513, 10.1016/j.gca.2006.06.162
Schmidt, 1987, Some recent advances in the scaling of impact and explosion cratering, Int. J. Impact Eng., 5, 543, 10.1016/0734-743X(87)90069-8
Schultz, 2016, Origin and implications of non-radial Imbrium Sculpture on the Moon, Nature, 535, 391, 10.1038/nature18278
Shih, 1985, Chronology and petrogenesis of a 1.8 g lunar granitic clast: 14321, 1062, Geochim. Cosmochim. Acta, 49, 411, 10.1016/0016-7037(85)90033-X
Swann, 1971, Geologic setting of the Apollo 14 samples, Science, 173, 716, 10.1126/science.173.3998.716
Swann, 1977, Geology of the Apollo 14 landing site in the Fra Mauro highlands, U. S. Geol. Surv. Prof. Pap., 880, 103
Taylor, 2009, Lu–Hf zircon evidence for rapid lunar differentiation, Earth Planet. Sci. Lett., 279, 157, 10.1016/j.epsl.2008.12.030
Thomas, 2010, TitaniQ under pressure: the effect of pressure and temperature on the solubility of Ti in quartz, Contrib. Mineral. Petrol., 160, 743, 10.1007/s00410-010-0505-3
Timms, 2012, Resolution of impact-related microstructures in lunar zircon: a shock-deformation mechanism map, Meteorit. Planet. Sci., 47, 120, 10.1111/j.1945-5100.2011.01316.x
Trail, 2012, Ce and Eu anomalies in zircon as proxies for the oxidation state of magmas, Geochim. Cosmochim. Acta, 97, 70, 10.1016/j.gca.2012.08.032
Valley, 2003, Oxygen isotopes in zircon, Rev. Mineral. Geochem., 53, 343, 10.2113/0530343
Valley, 2014, Correlated δ18O and [Ti] in lunar zircons: a terrestrial perspective for magma temperatures and water content on the Moon, Contrib. Mineral. Petrol., 167, 956, 10.1007/s00410-013-0956-4
Wadhwa, 2008, Redox conditions on small bodies, the Moon and Mars, Rev. Mineral. Geochem., 68, 493, 10.2138/rmg.2008.68.17
Warren, 1983, Petrology and chemistry of two “large” granite clasts from the Moon, Earth Planet. Sci. Lett., 64, 175, 10.1016/0012-821X(83)90202-9
Whitehouse, 2004, Multi-collector SIMS determination of trace lanthanides in zircon, Geostand. Geoanal. Res., 28, 195, 10.1111/j.1751-908X.2004.tb00736.x
Wieczorek, 1999, Lunar multiring basins and the cratering process, Icarus, 139, 246, 10.1006/icar.1999.6102
Wieczorek, 2012, The crust of the Moon as seen by GRAIL, Science