Các phim composite ba thành phần từ cao su thiên nhiên, sợi vi cellulose và carboxymethyl cellulose với các tính chất cơ học xuất sắc, khả năng phân hủy sinh học và độ bền hóa học

Springer Science and Business Media LLC - Tập 28 - Trang 8553-8566 - 2021
Goragot Supanakorn1, Siriporn Taokaew2, Muenduen Phisalaphong1
1Department of Chemical Engineering, Faculty of Engineering, Chulalongkorn University, Bangkok, Thailand
2Department of Materials Science and Technology, School of Engineering, Nagaoka University of Technology, Nagaoka, Japan

Tóm tắt

Việc chế tạo nhanh chóng và dễ dàng các phim composite chứa cao su thiên nhiên và sợi vi cellulose Eucalyptus đã được thực hiện bằng cách thêm carboxy methyl cellulose để mang lại các tính chất ưu việt như khả năng chống hóa chất, khả năng phân hủy sinh học và độ bền kéo tuyệt vời. Kết quả cho thấy carboxy methyl cellulose có thể được sử dụng như một chất ổn định tiền ngưng tụ để đạt được sự phân tán cao của các sợi cellulose ưa nước trong nhũ tương cao su thiên nhiên kỵ nước. Việc bổ sung các sợi cellulose vào ma trận cao su thiên nhiên đã cải thiện đáng kể độ tinh thể của các phim composite. Tại hàm lượng sợi cellulose cao nhất là 50% w/w, khả năng hấp thụ toluene của phim đã giảm xuống chỉ còn 5%, trong khi đó độ bền kéo của nó đã tăng lên gấp 100 lần so với phim cao su nguyên chất. Độ ổn định nhiệt giảm nhẹ, phụ thuộc vào hàm lượng sợi cellulose, nhưng nhiệt độ chuyển tiếp thủy tinh vẫn giữ nguyên ở khoảng -64 °C. Theo bản chất ưa nước của cellulose, khả năng hấp thụ nước và sự truyền hơi nước của các phim composite đã được cải thiện. Ngoài ra, độ phân hủy sinh học cũng được cải thiện đáng kể; các phim composite đã phân hủy đủ trong đất trong vòng 2 tuần.

Từ khóa

#Cao su thiên nhiên #cellulose vi sợi #carboxymethyl cellulose #phim composite #phân hủy sinh học #tính chất cơ học #độ bền hóa học

Tài liệu tham khảo

Abraham E, Deepa B, Pothan LA, John M, Narine SS, Thomas S, Anandjiwala R (2013) Physicomechanical properties of nanocomposites based on cellulose nanofibre and natural rubber latex. Cellulose 20(1):417–427. https://doi.org/10.1007/s10570-012-9830-1 Agarwal S (2020) Biodegradable polymers: present opportunities and challenges in providing a microplastic-free environment. Macromol Chem Phys 221(6):2000017. https://doi.org/10.1002/macp.202000017 Agrebi F, Ghorbel N, Bresson S, Abbas O, Kallel A (2019) Study of nanocomposites based on cellulose nanoparticles and natural rubber latex by ATR/FTIR spectroscopy: the impact of reinforcement. Polym Compos. https://doi.org/10.1002/pc.24989 Ali Shah A, Hasan F, Shah Z, Kanwal N, Zeb S (2013) Biodegradation of natural and synthetic rubbers: a review. Int Biodeter Biodegr 83:145–157. https://doi.org/10.1016/j.ibiod.2013.05.004 Bode HB, Kerkhoff K, Jendrossek D (2001) Bacterial degradation of natural and synthetic rubber. Biomacromol 2(1):295–303. https://doi.org/10.1021/bm005638h Bras J, Hassan ML, Bruzesse C, Hassan EA, El-Wakil NA, Dufresne A (2010) Mechanical, barrier, and biodegradability properties of bagasse cellulose whiskers reinforced natural rubber nanocomposites. Ind Crop Prod 32(3):627–633. https://doi.org/10.1016/j.indcrop.2010.07.018 Brodhagen M, Peyron M, Miles C, Inglis DA (2015) Biodegradable plastic agricultural mulches and key features of microbial degradation. Appl Microbiol Biotechnol 99(3):1039–1056. https://doi.org/10.1007/s00253-014-6267-5 Cherian S, Ryu SB, Cornish K (2019) Natural rubber biosynthesis in plants, the rubber transferase complex, and metabolic engineering progress and prospects. Plant Biotechnol J 17(11):2041–2061. https://doi.org/10.1111/pbi.13181 Ferronato N, Torretta V (2019) Waste mismanagement in developing countries: a review of global issues. Int J Env Res Public Health. https://doi.org/10.3390/ijerph16061060 Flauzino Neto WP, Mariano M, da Silva ISV, Silvério HA, Putaux J-L, Otaguro H, Pasquini D, Dufresne A (2016) Mechanical properties of natural rubber nanocomposites reinforced with high aspect ratio cellulose nanocrystals isolated from soy hulls. Carbohydr Polym 153:143–152. https://doi.org/10.1016/j.carbpol.2016.07.073 French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21(2):885–896. https://doi.org/10.1007/s10570-013-0030-4 Gleadall A (2015) 9: Mechanical properties of biodegradable polymers for medical applications. In: Pan J (ed) Modelling degradation of bioresorbable polymeric medical devices. Woodhead Publishing, United Kingdom, pp 163–199 Heinze T, Koschella A (2005) Carboxymethyl ethers of cellulose and starch: a review. Macromol Syst 223(1):13–40. https://doi.org/10.1002/masy.200550502 Holtzapple MT (2003) Cellulose. In: Caballero B (ed) Encyclopedia of food sciences and nutrition, 2nd edn. Academic Press, Oxford, pp 998–1007 Huang H, He P, Hu N, Zeng Y (2003) Electrochemical and electrocatalytic properties of myoglobin and hemoglobin incorporated in carboxymethyl cellulose films. Bioelectrochemistry 61(1):29–38. https://doi.org/10.1016/S1567-5394(03)00057-4 Ilyas RA, Sapuan SM, Sanyang ML, Ishak MR, Zainudin ES (2018) Nanocrystalline cellulose as reinforcement for polymeric matrix nanocomposites and its potential applications: a review. Curr Anal Chem 14(3):203–225. https://doi.org/10.2174/1573411013666171003155624 Imre B, Pukánszky B (2013) Compatibilization in bio-based and biodegradable polymer blends. Eur Polym J 49(6):1215–1233. https://doi.org/10.1016/j.eurpolymj.2013.01.019 Jayathilaka LPI, Ariyadasa TU, Egodage SM (2020) Development of biodegradable natural rubber latex composites by employing corn derivative bio-fillers. J Appl Polym Sci 137(40):49205. https://doi.org/10.1002/app.49205 Klemm D, Heublein B, Fink HP, Bohn A (2005) Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Edit 44(22):3358–3393. https://doi.org/10.1002/anie.200460587 Mariano M, El Kissi N, Dufresne A (2016) Cellulose nanocrystal reinforced oxidized natural rubber nanocomposites. Carbohydr Polym 137:174–183. https://doi.org/10.1016/j.carbpol.2015.10.027 Nawamawat K, Sakdapipanich JT, Ho CC, Ma Y, Song J, Vancso JG (2011) Surface nanostructure of Hevea brasiliensis natural rubber latex particles. Colloids Surf Physicochem Eng Asp 390(1):157–166. https://doi.org/10.1016/j.colsurfa.2011.09.021 Nawong C, Umsakul K, Sermwittayawong N (2018) Rubber gloves biodegradation by a consortium, mixed culture and pure culture isolated from soil samples. Braz J Microbiol 49(3):481–488. https://doi.org/10.1016/j.bjm.2017.07.006 Phomrak S, Phisalaphong M (2017) Reinforcement of natural rubber with bacterial cellulose via a latex aqueous microdispersion process. J Nanomater 2017:4739793. https://doi.org/10.1155/2017/4739793 Rolere S, Liengprayoon S, Vaysse L, Sainte-Beuve J, Bonfils F (2015) Investigating natural rubber composition with Fourier Transform Infrared (FT-IR) spectroscopy: a rapid and non-destructive method to determine both protein and lipid contents simultaneously. Polym Test 43:83–93. https://doi.org/10.1016/j.polymertesting.2015.02.011 Rose K, Steinbüchel A (2005) Biodegradation of natural rubber and related compounds: recent insights into a hardly understood catabolic capability of microorganisms. Appl Environ Microbiol 71(6):2803–2812. https://doi.org/10.1128/AEM.71.6.2803-2812.2005 Sarkawi SS, Dierkes WK, Noordermeer JWM (2014) Elucidation of filler-to-filler and filler-to-rubber interactions in silica-reinforced natural rubber by TEM network visualization. Eur Polym J 54:118–127. https://doi.org/10.1016/j.eurpolymj.2014.02.015 Siró I, Plackett D (2010) Microfibrillated cellulose and new nanocomposite materials: a review. Cellulose 17(3):459–494. https://doi.org/10.1007/s10570-010-9405-y Song JH, Murphy RJ, Narayan R, Davies GBH (2009) Biodegradable and compostable alternatives to conventional plastics. Philos T R Soc B 364(1526):2127–2139. https://doi.org/10.1098/rstb.2008.0289 Taokaew S, Phisalaphong M, Newby BMZ (2016) Bacterial cellulose: biosyntheses, modifications, and applications. Appl Environ Mater Sci Sustain. https://doi.org/10.4018/978-1-5225-1971-3.ch012 Taokaew S, Phisalaphong M (2018) Fabrication of gelatin complexes/bio-nanocellulose nanostructured composite mats. Mater Sci Forum 936:142–147 Thompson RC, Moore CJ, Saal FSV, Swan SH (2009) Plastics, the environment and human health: Current consensus and future trends. Philos T R Soc 364(1526):2153–2166. https://doi.org/10.1098/rstb.2009.0053 Valera-Zaragoza M, Yescas-Yescas A, Juarez-Arellano EA, Aguirre-Cruz A, Aparicio-Saguilán A, Ramírez-Vargas E, Sepúlveda-Guzmán S, Sánchez-Valdes S (2014) Immobilization of TiO2 nanoparticles on montmorillonite clay and its effect on the morphology of natural rubber nanocomposites. Polym Bull 71(6):1295–1313. https://doi.org/10.1007/s00289-014-1123-4 Yao W, Weng Y, Catchmark JM (2020) Improved cellulose X-ray diffraction analysis using Fourier series modeling. Cellulose 27(10):5563–5579. https://doi.org/10.1007/s10570-020-03177-8 Yu P, He H, Luo Y, Jia D, Dufresne A (2017) Reinforcement of natural rubber: the use of in situ regenerated cellulose from alkaline–urea–aqueous system. Macromolecules 50(18):7211–7221. https://doi.org/10.1021/acs.macromol.7b01663