Ternary Ni–Cu–OH and Ni–Co–OH electrodes for electrochemical energy storage
Tóm tắt
In this project, Ni–Cu–OH and Ni–Co–OH ternary electrodes have been prepared. Different Ni:Cu and Ni:Co ratios were deposited by chemical bath deposition (CBD) at room temperature on carbon microfibers. Since Ni(OH)2 is notorious for poor cycling stability, the goal of the work was to determine if doping with Cu or Co could improve Ni(OH)2 cycling stability performance and conductivity against reaction with electrolyte. It is observed that the electrodes with Ni:Cu and Ni:Co composition ratio of 100:10 result in the optimum capacitance and cycling stability in both Ni–Cu–OH and Ni–Co–OH electrodes. This improvement in cycling stability can be attributed to the higher redox reversibility as indicated by the smaller CV redox peak separation. In addition, it is found that decreasing Cu and Co ratios, with fixed CBD time, enhances nanoflakes formation, and hence increases electrode capacitance. For the optimum composition (Ni:Co = 100:10), composites of the ternary electrodes with graphene and carbon nanofibers were also tested, with resultant improvement in potential window, equivalent series resistance, areal capacitance and cycling stability.
Tài liệu tham khảo
BCC Research. Supercapacitors: Technology Developments and Global Markets. Report No. EGY068B. BCC Research (2015). ISBN: 1-62296-035-1
Conway, B.E.: Electrochemical Supercapacitors: Scientific Fundamentals and Technological Applications. Springer, New York (1999). doi:10.1007/978-1-4757-3058-6
Salunkhe, R.R., et al.: Nanoarchitectured Graphene-Based Supercapacitors for Next-Generation Energy-Storage Applications. Chem. A Eur. J. 20, 13838–13852 (2014). doi:10.1002/chem.201403649
Faraji, S., Ani, F.N.: The development supercapacitor from activated carbon by electroless plating—a review. Renew. Sustain. Energy Rev. 42, 823–834 (2015). doi:10.1016/j.rser.2014.10.068
Augustyn, V., Simon, P., Dunn, B.: Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7, 1597–1614 (2014). doi:10.1039/c3ee44164d
Faraji, S., Ani, F.N.: Microwave-assisted synthesis of metal oxide/hydroxide composite electrodes for high power supercapacitors—a review. J. Power Source 263, 338–360 (2014). doi:10.1016/j.jpowsour.2014.03.144
Feng, L., Zhu, Y., Ding, H., Ni, C.: Recent progress in nickel based materials for high performance pseudocapacitor electrodes. J. Power Source 267, 430–444 (2014). doi:10.1016/j.jpowsour.2014.05.092Review
Zhang, K., et al.: Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem. Soc. Rev. 44, 699–728 (2015). doi:10.1039/c4cs00218k
Abdelhamid, M.E., O’Mullane, A.P., Snook, G.A.: Storing energy in plastics: a review on conducting polymers and their role in electrochemical energy storage. RSC Adv. 5, 11611–11626 (2015). doi:10.1039/c4ra15947k
Carbonio, R.E., Macango, V.A., Giordano, M.C., Vilche, J.R., Arvia, A.J.: A Transition in the Kinetics of the Ni(OH)2/NiOOH Electrode Reaction. J. Electrochem. Soc. 129, 983–991 (1982). doi:10.1149/1.2124077
Hu, G., Li, C., Gong, H.: Capacitance decay of nanoporous nickel hydroxide. J. Power Sources 195, 6977–6981 (2010). doi:10.1016/j.jpowsour.2010.03.093
Kamath, P.V., et al.: Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells. J. Electrochem. Soc. 141, 2956–2959 (1994). doi:10.1149/1.2059264
Watanabe, K.-I., Koseki, M., Kumagai, N.: Effect of cobalt addition to nickel hydroxide as a positive material for rechargeable alkaline batteries. J. Power Sources 58, 23–28 (1996). doi:10.1016/0378-7753(95)02272-4
Chen, J., Bradhurst, D.H., Dou, S.X., Liu, H.K.: Nickel Hydroxide as an Active Material for the Positive Electrode in Rechargeable Alkaline Batteries. J. Electrochem. Soc. 146, 3606–3612 (1999). doi:10.1149/1.1392522
Liu, B., Zhang, Y., Yuan, H., Yang, H., Yang, E.: Electrochemical studies of aluminum substituted α-Ni(OH)2 electrodes. Int. J. Hydrogen Energy 25, 333–337 (2000). doi:10.1016/S0360-3199(99)00026-9
Jayashree, R.S., Vishnu Kamath, P.: Suppression of the α → β-nickel hydroxide transformation in concentrated alkali: role of dissolved cations. J Appl Electrochem 31, 1315–1320 (2001). doi:10.1023/a:1013876006707
Lien, C.H., Hu, C.C., Hsu, C.T., Wong, D.S.H.: High-performance asymmetric supercapacitor consisting of Ni–Co–Cu oxy-hydroxide nanosheets and activated carbon. Electrochem. Commun. 34, 323–326 (2013). doi:10.1016/j.elecom.2013.07.032
Pramanik, P., Bhattacharya, S.: A Chemical Method for the Deposition of Nickel Oxide Thin Films. J. Electrochem. Soc. 137, 3869–3870 (1990). doi:10.1149/1.2086316
Alhebshi, N.A., Rakhi, R.B., Alshareef, H.N.: Conformal coating of Ni(OH)2 nanoflakes on carbon fibers by chemical bath deposition for efficient supercapacitor electrodes. J. Mater. Chem. A 1, 14897–14903 (2013). doi:10.1039/C3TA12936E
Sun, X., et al.: Morphology controlled high performance supercapacitor behaviour of the Ni–Co binary hydroxide system. J. Power Sources 238, 150–156 (2013). doi:10.1016/j.jpowsour.2013.03.069
Zhang, L., Tang, C., Yin, X., Gong, H.: Substrate-assisted self-organization of Ni–Cu spherical double hydroxide (SDH) and its excellent pseudo-capacitive performance. J. Mater. Chem. A 2, 4660–4666 (2014). doi:10.1039/c3ta14374k
Bai, Y., Rakhi, R.B., Chen, W., Alshareef, H.N.: Effect of pH-induced chemical modification of hydrothermally reduced graphene oxide on supercapacitor performance. J. Power Sources 233, 313–319 (2013). doi:10.1016/j.jpowsour.2013.01.122
An, X., et al.: Stable Aqueous Dispersions of Noncovalently Functionalized Graphene from Graphite and their Multifunctional High-Performance Applications. Nano Lett. 10, 4295–4301 (2010). doi:10.1021/nl903557p
Bode, H., Dehmelt, K., Witte, J. Zur kenntnis der nickelhydroxidelektrode—I.Über das nickel (II)-hydroxidhydrat. Electrochim. Acta 11, 1079-IN1071, doi:10.1016/0013-4686(66)80045-2 (1966)